Commit 2eb7a873 authored by Joseph Siddons's avatar Joseph Siddons
Browse files

docs: add example notebooks

parent 086e5b37
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "bdfa1141-8ae0-499b-8355-927759af69d1",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import gzip\n",
"os.environ[\"POLARS_MAX_THREADS\"] = \"4\"\n",
"\n",
"from datetime import datetime, timedelta\n",
"from random import choice\n",
"from string import ascii_letters, digits\n",
"import random\n",
"import inspect\n",
"\n",
"import polars as pl\n",
"import numpy as np\n",
"\n",
"from GeoSpatialTools import Record, haversine, KDTree"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8711862a-6295-43eb-ac51-333fda638ef4",
"metadata": {},
"outputs": [],
"source": [
"def randnum() -> float:\n",
" return 2 * (np.random.rand() - 0.5)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "72164093-fac1-4dfc-803b-6522cc9a4d62",
"metadata": {},
"outputs": [],
"source": [
"def generate_uid(n: int) -> str:\n",
" chars = ascii_letters + digits\n",
" return \"\".join(random.choice(chars) for _ in range(n))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c60b30de-f864-477a-a09a-5f1caa4d9b9a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(14222, 2)\n",
"shape: (5, 2)\n",
"┌──────┬─────┐\n",
"│ lon ┆ lat │\n",
"│ --- ┆ --- │\n",
"│ i64 ┆ i64 │\n",
"╞══════╪═════╡\n",
"│ -30 ┆ -41 │\n",
"│ -149 ┆ 56 │\n",
"│ 7 ┆ -68 │\n",
"│ -48 ┆ 83 │\n",
"│ -126 ┆ -35 │\n",
"└──────┴─────┘\n"
]
}
],
"source": [
"N = 16_000\n",
"lons = pl.int_range(-180, 180, eager=True)\n",
"lats = pl.int_range(-90, 90, eager=True)\n",
"dates = pl.datetime_range(datetime(1900, 1, 1, 0), datetime(1900, 1, 31, 23), interval=\"1h\", eager=True)\n",
"\n",
"lons_use = lons.sample(N, with_replacement=True).alias(\"lon\")\n",
"lats_use = lats.sample(N, with_replacement=True).alias(\"lat\")\n",
"# dates_use = dates.sample(N, with_replacement=True).alias(\"datetime\")\n",
"# uids = pl.Series(\"uid\", [generate_uid(8) for _ in range(N)])\n",
"\n",
"df = pl.DataFrame([lons_use, lats_use]).unique()\n",
"print(df.shape)\n",
"print(df.head())"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "875f2a67-49fe-476f-add1-b1d76c6cd8f9",
"metadata": {},
"outputs": [],
"source": [
"records = [Record(**r) for r in df.rows(named=True)]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "1e883e5a-5086-4c29-aff2-d308874eae16",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 43.5 ms, sys: 3.43 ms, total: 46.9 ms\n",
"Wall time: 46.8 ms\n"
]
}
],
"source": [
"%%time\n",
"kt = KDTree(records)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "69022ad1-5ec8-4a09-836c-273ef452451f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"173 μs ± 1.36 μs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"test_record = Record(random.choice(range(-179, 180)) + randnum(), random.choice(range(-89, 90)) + randnum())\n",
"kt.query(test_record)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "28031966-c7d0-4201-a467-37590118e851",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"7.71 ms ± 38.7 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"test_record = Record(random.choice(range(-179, 180)) + randnum(), random.choice(range(-89, 90)) + randnum())\n",
"np.argmin([test_record.distance(p) for p in records])"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0d10b2ba-57b2-475c-9d01-135363423990",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 15.4 s, sys: 37.8 ms, total: 15.5 s\n",
"Wall time: 15.5 s\n"
]
}
],
"source": [
"%%time\n",
"n_samples = 1000\n",
"test_records = [Record(random.choice(range(-179, 180)) + randnum(), random.choice(range(-89, 90)) + randnum()) for _ in range(n_samples)]\n",
"kd_res = [kt.query(r) for r in test_records]\n",
"kd_recs = [_[0] for _ in kd_res]\n",
"kd_dists = [_[1] for _ in kd_res]\n",
"tr_recs = [records[np.argmin([r.distance(p) for p in records])] for r in test_records]\n",
"tr_dists = [min([r.distance(p) for p in records]) for r in test_records]\n",
"assert kd_dists == tr_dists, \"NOT MATCHING?\""
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "a6aa6926-7fd5-4fff-bd20-7bc0305b948d",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><style>\n",
".dataframe > thead > tr,\n",
".dataframe > tbody > tr {\n",
" text-align: right;\n",
" white-space: pre-wrap;\n",
"}\n",
"</style>\n",
"<small>shape: (0, 8)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>test_lon</th><th>test_lat</th><th>kd_dist</th><th>kd_lon</th><th>kd_lat</th><th>tr_dist</th><th>tr_lon</th><th>tr_lat</th></tr><tr><td>f64</td><td>f64</td><td>f64</td><td>i64</td><td>i64</td><td>f64</td><td>i64</td><td>i64</td></tr></thead><tbody></tbody></table></div>"
],
"text/plain": [
"shape: (0, 8)\n",
"┌──────────┬──────────┬─────────┬────────┬────────┬─────────┬────────┬────────┐\n",
"│ test_lon ┆ test_lat ┆ kd_dist ┆ kd_lon ┆ kd_lat ┆ tr_dist ┆ tr_lon ┆ tr_lat │\n",
"│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n",
"│ f64 ┆ f64 ┆ f64 ┆ i64 ┆ i64 ┆ f64 ┆ i64 ┆ i64 │\n",
"╞══════════╪══════════╪═════════╪════════╪════════╪═════════╪════════╪════════╡\n",
"└──────────┴──────────┴─────────┴────────┴────────┴─────────┴────────┴────────┘"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"test_lons = [r.lon for r in test_records]\n",
"test_lats = [r.lat for r in test_records]\n",
"\n",
"kd_lons = [r.lon for r in kd_recs]\n",
"kd_lats = [r.lat for r in kd_recs]\n",
"\n",
"tr_lons = [r.lon for r in tr_recs]\n",
"tr_lats = [r.lat for r in tr_recs]\n",
"\n",
"pl.DataFrame({\n",
" \"test_lon\": test_lons, \n",
" \"test_lat\": test_lats,\n",
" \"kd_dist\": kd_dists,\n",
" \"kd_lon\": kd_lons,\n",
" \"kd_lat\": kd_lats,\n",
" \"tr_dist\": tr_dists,\n",
" \"tr_lon\": tr_lons,\n",
" \"tr_lat\": tr_lats, \n",
"}).filter(pl.col(\"kd_dist\").ne(pl.col(\"tr_dist\")))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "GeoSpatialTools",
"language": "python",
"name": "geospatialtools"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
{
"cells": [
{
"cell_type": "markdown",
"id": "c70ce35d-6112-4c12-9387-9c788c84a8e9",
"metadata": {},
"source": [
"## OctTree!\n",
"\n",
"Testing the time to look-up nearby records with the PyCOADS OctTree implementation."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c0956916-f50a-444d-a5b6-f06d3fb9b44d",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import gzip\n",
"os.environ[\"POLARS_MAX_THREADS\"] = \"4\"\n",
"\n",
"from datetime import datetime, timedelta\n",
"from random import choice\n",
"from string import ascii_letters, digits\n",
"import random\n",
"import inspect\n",
"\n",
"import polars as pl\n",
"import numpy as np\n",
"\n",
"from GeoSpatialTools.octtree import OctTree, SpaceTimeRecord as Record, SpaceTimeRectangle as Rectangle"
]
},
{
"cell_type": "raw",
"id": "99295bad-0db3-444b-8d38-acc7875cc0f0",
"metadata": {},
"source": [
"## Generate Data\n",
"\n",
"16,000 rows of data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d8f1e5e1-513c-4bdf-a9f9-cef9562a7cb7",
"metadata": {},
"outputs": [],
"source": [
"def generate_uid(n: int) -> str:\n",
" chars = ascii_letters + digits\n",
" return \"\".join(random.choice(chars) for _ in range(n))"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "986d9cc5-e610-449a-9ee7-e281b7558ca9",
"metadata": {},
"outputs": [],
"source": [
"N = 16_000\n",
"lons = pl.int_range(-180, 180, eager=True)\n",
"lats = pl.int_range(-90, 90, eager=True)\n",
"dates = pl.datetime_range(datetime(1900, 1, 1, 0), datetime(1900, 1, 31, 23), interval=\"1h\", eager=True)\n",
"\n",
"lons_use = lons.sample(N, with_replacement=True).alias(\"lon\")\n",
"lats_use = lats.sample(N, with_replacement=True).alias(\"lat\")\n",
"dates_use = dates.sample(N, with_replacement=True).alias(\"datetime\")\n",
"uids = pl.Series(\"uid\", [generate_uid(8) for _ in range(N)])\n",
"\n",
"df = pl.DataFrame([lons_use, lats_use, dates_use, uids]).unique()"
]
},
{
"cell_type": "markdown",
"id": "237096f1-093e-49f0-9a9a-2bec5231726f",
"metadata": {},
"source": [
"## Add extra rows\n",
"\n",
"For testing larger datasets. Uncomment to use."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "0b8fd425-8a90-4f76-91b7-60df48aa98e4",
"metadata": {},
"outputs": [],
"source": [
"# _df = df.clone()\n",
"# for i in range(100):\n",
"# df2 = pl.DataFrame([\n",
"# _df[\"lon\"].shuffle(),\n",
"# _df[\"lat\"].shuffle(),\n",
"# _df[\"datetime\"].shuffle(),\n",
"# _df[\"uid\"].shuffle(),\n",
"# ]).with_columns(pl.concat_str([pl.col(\"uid\"), pl.lit(f\"{i:03d}\")]).alias(\"uid\"))\n",
"# df = df.vstack(df2)\n",
"# df.shape\n",
"# df"
]
},
{
"cell_type": "markdown",
"id": "c7bd16e0-96a6-426b-b00a-7c3b8a2aaddd",
"metadata": {},
"source": [
"## Intialise the OctTree Object"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "af06a976-ff52-49e0-a886-91bcbe540ffe",
"metadata": {},
"outputs": [],
"source": [
"otree = OctTree(Rectangle(0, 0, datetime(1900, 1, 16), 360, 180, timedelta(days=32)), capacity = 10, max_depth = 25)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "2ba99b37-787c-4862-8075-a7596208c60e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 186 ms, sys: 191 ms, total: 377 ms\n",
"Wall time: 118 ms\n"
]
}
],
"source": [
"%%time\n",
"for r in df.rows():\n",
" otree.insert(Record(*r))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "59d38446-f7d2-4eec-bba3-c39bd7279623",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"OctTree:\n",
"- boundary: SpaceTimeRectangle(x = 0, y = 0, w = 360, h = 180, t = 1900-01-16 00:00:00, dt = 32 days, 0:00:00)\n",
"- capacity: 10\n",
"- depth: 0\n",
"- max_depth: 25\n",
"- contents:\n",
"- number of elements: 10\n",
" * Record(x = 43, y = -68, datetime = 1900-01-08 13:00:00, uid = OBiqSYcn)\n",
" * Record(x = 97, y = -47, datetime = 1900-01-02 14:00:00, uid = w589k3Oe)\n",
" * Record(x = -68, y = 44, datetime = 1900-01-30 11:00:00, uid = XAaA7McU)\n",
" * Record(x = -170, y = 77, datetime = 1900-01-19 09:00:00, uid = x6eLi65N)\n",
" * Record(x = -2, y = 7, datetime = 1900-01-12 09:00:00, uid = CjB2Pglt)\n",
" * Record(x = -175, y = 65, datetime = 1900-01-15 01:00:00, uid = bTB9DkDI)\n",
" * Record(x = 8, y = 83, datetime = 1900-01-04 10:00:00, uid = aYCKIBl9)\n",
" * Record(x = 20, y = 60, datetime = 1900-01-24 16:00:00, uid = 8GsD19WF)\n",
" * Record(x = 161, y = 40, datetime = 1900-01-24 20:00:00, uid = FIfAABuC)\n",
" * Record(x = -69, y = -9, datetime = 1900-01-11 11:00:00, uid = uTcS5D4e)\n",
"- with children:\n",
" OctTree:\n",
" - boundary: SpaceTimeRectangle(x = -90.0, y = 45.0, w = 180.0, h = 90.0, t = 1900-01-08 00:00:00, dt = 16 days, 0:00:00)\n",
" - capacity: 10\n",
" - depth: 1\n",
" - max_depth: 25\n",
" - contents:\n",
" - number of elements: 10\n",
" * Record(x = -156, y = 57, datetime = 1900-01-08 10:00:00, uid = aFheRU2n)\n",
" * Record(x = -100, y = 61, datetime = 1900-01-15 09:00:00, uid = Sa1iavle)\n",
" * Record(x = -168, y = 88, datetime = 1900-01-03 07:00:00, uid = IlYKGW0N)\n",
" * Record(x = -80, y = 50, datetime = 1900-01-05 09:00:00, uid = Rg3GHM4d)\n",
" * Record(x = -92, y = 39, datetime = 1900-01-15 06:00:00, uid = u804YMFB)\n",
" * Record(x = -119, y = 60, datetime = 1900-01-12 22:00:00, uid = vdEPjkib)\n",
" * Record(x = -160, y = 79, datetime = 1900-01-06 08:00:00, uid = QmrPEL6h)\n",
" * Record(x = -95, y = 21, datetime = 1900-01-09 04:00:00, uid = hfjTKSCH)\n",
" * Record(x = -93, y = 61, datetime = 1900-01-09 20:00:00, uid = SzIrja9S)\n",
" * Record(x = -149, y = 34, datetime = 1900-01-05 05:00:00, uid = b02MxQjV)\n",
" - with children:\n",
" OctTree:\n",
" - boundary: SpaceTimeRectangle(x = -135.0, y = 67.5, w = 90.0, h = 45.0, t = 1900-01-04 00:00:00, dt = 8 days, 0:00:00)\n",
" - capacity: 10\n",
" - depth: 2\n",
" - max_depth: 25\n",
" - contents:\n",
" - number of elements: 10\n",
" * Record(x = -134, y = 79, datetime = 1900-01-05 14:00:00, uid = 7Q0FKGMk)\n",
" * Record(x = -90, y = 53, datetime = 1900-01-05 03:00:00, uid = LLx7iz2v)\n",
" * Record(x = -176, y = 50, datetime = 1900-01-06 20:00:00, uid = x6K5DlTl)\n",
" * Record(x = -141, y = 52, datetime = 1900-01-02 15:00:00, uid = xTpGPaEy)\n",
" * Record(x = -116, y = 68, datetime = 1900-01-05 16:00:00, uid = eECSkpdU)\n",
" * Record(x = -138, y = 63, datetime = 1900-01-05 02:00:00, uid = Ftf9uhH3)\n",
" * Record(x = -173, y = 71, datetime = 1900-01-03 03:00:00, uid = mu3vwHM5)\n",
" * Record(x = -148, y = 49, datetime = 1900-01-05 15:00:00, uid = 8DFDI3CJ)\n",
" * Record(x = -157, y = 63, datetime = 1900-01-06 19:00:00, uid = mVqLntgh)\n",
" * Record(x = -154, y = 45, datetime = 1900-01-07 11:00:00, uid = 1UoA1NNC)\n",
" - with children:\n",
" OctTree:\n",
" - boundary: SpaceTimeRectangle(x = -157.5, y = 78.75, w = 45.0, h = 22.5, t = 1900-01-02 00:00:00, dt = 4 days, 0:00:00)\n",
" - capacity: 10\n",
" - depth: 3\n",
" - max_depth: 25\n",
" - contents:\n",
" - number of elements: 10\n",
" * Record(x = -147, y = 83, datetime = 1900-01-01 18:00:00, uid = WaO5R7fy)\n",
" * Record(x = -136, y = 72, datetime = 1900-01-02 03:00:00, uid = OWaMqULr)\n",
" * Record(x = -176, y = 79, datetime = 1900-01-02 06:00:00, uid = NTjvqz2c)\n",
" * Record(x = -152, y = 72, datetime = 1900-01-03 18:00:00, uid = 7rtQIGtn)\n",
" * Record(x = -162, y = 78, datetime = 1900-01-02 04:00:00, uid = Wi9RsOIX)\n",
" * Record(x = -136, y = 79, datetime = 1900-01-01 11:00:00, uid = hSltzeuH)\n",
" * Record(x = -176, y = 89, datetime = 1900-01-02 09:00:00, uid = cOLgAely)\n",
" * Record(x = -141, y = 75, datetime = 1900-01-03 23:00:00, uid = gH755dC3)\n",
" * Record(x = -158, y = 72, datetime = 1900-01-02 23:00:00, uid = NUmMfw9K)\n",
" * Record(x = -168, y = 72, datetime = 1900-01-02 01:00:00, uid = ZFcsxYG4)\n",
" - with children:\n",
" OctTree:\n",
" - boundary: SpaceTimeRectangle(x = -168.75, y = 84.375, w = 22.5, h = 11.25, t = 1900-01-01 00:00:00, dt = 2 days, 0:00:00)\n",
" - capacity: 10\n",
" - depth: 4\n",
" - max_depth: 25\n",
" - contents:\n",
" - number of elements: 6\n",
" * Record(x = -158, y = 86, datetime = 1900-01-01 15:00:00, uid = DOD5jT2l)\n",
" * Record(x = -165, y = 88, datetime = 1900-01-01 13:00:00, uid = kdGlzz41)\n",
" * Record(x = -173, y = 82, datetime = 1900-01-01 04:00:00, uid = aWBwIP4U)\n",
" * Record(x = -180, y = 89, datetime = 1900-01-01 22:00:00, uid = HOxbaCm8)\n",
" * Record(x = -165, y = 81, datetime = 1900-01-01 16:00:00, uid = JtRn9y9e)\n",
" * Record(x = -164, y = 84, datetime = 1900-01-01 03:00:00, uid = vELpx1ij)\n",
" OctTree:\n",
" - boundary: SpaceTimeRectangle(x = -146.25, y = 84.375, w = 22.5, h = 11.25, t = 1900-01-01 00:00:00, dt = 2 days, 0:00:00)\n",
" - capacity: 10\n",
" - depth: 4\n",
" - max_depth: 25\n",
" - contents:\n",
" - number of elements: 1\n",
" * Record(x = -157, y = 84, datetime = 1900-01-01 17:00:00, uid = 6DlgVOXg)\n",
" OctTree:\n",
" - boundary: SpaceTimeRectangle(x = -168.75, y = 73.125, w = 22.5, h = 11.25, t = 1900-01-01 00:00:00, dt = 2 days, 0:00:00)\n",
" - capacity: 10\n",
" - depth: 4\n",
" - max_depth: 25\n",
" - contents:\n",
" - number of elements: 2\n"
]
}
],
"source": [
"s = str(otree)\n",
"print(\"\\n\".join(s.split(\"\\n\")[:100]))"
]
},
{
"cell_type": "markdown",
"id": "6b02c2ea-6566-47c2-97e0-43d8b18e0713",
"metadata": {},
"source": [
"## Time Execution\n",
"\n",
"Testing the identification of nearby points against the original full search"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "094b588c-e938-4838-9719-1defdfff74fa",
"metadata": {},
"outputs": [],
"source": [
"dts = pl.datetime_range(datetime(1900, 1, 1), datetime(1900, 2, 1), interval=\"1h\", eager=True, closed=\"left\")\n",
"N = dts.len()\n",
"lons = 180 - 360 * np.random.rand(N)\n",
"lats = 90 - 180 * np.random.rand(N)\n",
"test_df = pl.DataFrame({\"lon\": lons, \"lat\": lats, \"datetime\": dts})\n",
"test_recs = [Record(*r) for r in test_df.rows()]\n",
"dt = timedelta(days = 1)\n",
"dist = 350"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "66a48b86-d449-45d2-9837-2b3e07f5563d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"206 μs ± 3.36 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"otree.nearby_points(random.choice(test_recs), dist=dist, t_dist=dt)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "972d4a16-39fd-4f80-8592-1c5d5cabf5be",
"metadata": {
"jupyter": {
"source_hidden": true
}
},
"outputs": [],
"source": [
"def check_cols(\n",
" df: pl.DataFrame | pl.LazyFrame,\n",
" cols: list[str],\n",
" var_name: str = \"dataframe\",\n",
") -> None:\n",
" \"\"\"\n",
" Check that a dataframe contains a list of columns. Raises an error if not.\n",
"\n",
" Parameters\n",
" ----------\n",
" df : polars Frame\n",
" Dataframe to check\n",
" cols : list[str]\n",
" Requried columns\n",
" var_name : str\n",
" Name of the Frame - used for displaying in any error.\n",
" \"\"\"\n",
" calling_func = inspect.stack()[1][3]\n",
" if isinstance(df, pl.DataFrame):\n",
" have_cols = df.columns\n",
" elif isinstance(df, pl.LazyFrame):\n",
" have_cols = df.collect_schema().names()\n",
" else:\n",
" raise TypeError(\"Input Frame is not a polars Frame\")\n",
"\n",
" cols_in_frame = intersect(cols, have_cols)\n",
" missing = [c for c in cols if c not in cols_in_frame]\n",
"\n",
" if len(missing) > 0:\n",
" err_str = f\"({calling_func}) - {var_name} missing required columns. \"\n",
" err_str += f'Require: {\", \".join(cols)}. '\n",
" err_str += f'Missing: {\", \".join(missing)}.'\n",
" logging.error(err_str)\n",
" raise ValueError(err_str)\n",
"\n",
" return\n",
"\n",
"\n",
"def haversine_df(\n",
" df: pl.DataFrame | pl.LazyFrame,\n",
" date_var: str = \"datetime\",\n",
" R: float = 6371,\n",
" reverse: bool = False,\n",
" out_colname: str = \"dist\",\n",
" lon_col: str = \"lon\",\n",
" lat_col: str = \"lat\",\n",
" lon2_col: str | None = None,\n",
" lat2_col: str | None = None,\n",
" sorted: bool = False,\n",
" rev_prefix: str = \"rev_\",\n",
") -> pl.DataFrame | pl.LazyFrame:\n",
" \"\"\"\n",
" Compute haversine distance on earth surface between lon-lat positions.\n",
"\n",
" If only 'lon_col' and 'lat_col' are specified then this computes the\n",
" distance between consecutive points. If a second set of positions is\n",
" included via the optional 'lon2_col' and 'lat2_col' arguments then the\n",
" distances between the columns are computed.\n",
"\n",
" Parameters\n",
" ----------\n",
" df : polars.DataFrame\n",
" The data, containing required columns:\n",
" * lon_col\n",
" * lat_col\n",
" * date_var\n",
" date_var : str\n",
" Name of the datetime column on which to sort the positions\n",
" R : float\n",
" Radius of earth in km\n",
" reverse : bool\n",
" Compute distances in reverse\n",
" out_colname : str\n",
" Name of the output column to store distances. Prefixed with 'rev_' if\n",
" reverse is True\n",
" lon_col : str\n",
" Name of the longitude column\n",
" lat_col : str\n",
" Name of the latitude column\n",
" lon2_col : str\n",
" Name of the 2nd longitude column if present\n",
" lat2_col : str\n",
" Name of the 2nd latitude column if present\n",
" sorted : bool\n",
" Compute distances assuming that the frame is already sorted\n",
" rev_prefix : str\n",
" Prefix to use for colnames if reverse is True\n",
"\n",
" Returns\n",
" -------\n",
" polars.DataFrame\n",
" With additional column specifying distances between consecutive points\n",
" in the same units as 'R'. With colname defined by 'out_colname'.\n",
" \"\"\"\n",
" required_cols = [lon_col, lat_col]\n",
"\n",
" if lon2_col is not None and lat2_col is not None:\n",
" required_cols += [lon2_col, lat2_col]\n",
" check_cols(df, required_cols, \"df\")\n",
" return (\n",
" df.with_columns(\n",
" [\n",
" pl.col(lat_col).radians().alias(\"_lat0\"),\n",
" pl.col(lat2_col).radians().alias(\"_lat1\"),\n",
" (pl.col(lon_col) - pl.col(lon2_col))\n",
" .radians()\n",
" .alias(\"_dlon\"),\n",
" (pl.col(lat_col) - pl.col(lat2_col))\n",
" .radians()\n",
" .alias(\"_dlat\"),\n",
" ]\n",
" )\n",
" .with_columns(\n",
" (\n",
" (pl.col(\"_dlat\") / 2).sin().pow(2)\n",
" + pl.col(\"_lat0\").cos()\n",
" * pl.col(\"_lat1\").cos()\n",
" * (pl.col(\"_dlon\") / 2).sin().pow(2)\n",
" ).alias(\"_a\")\n",
" )\n",
" .with_columns(\n",
" (2 * R * (pl.col(\"_a\").sqrt().arcsin()))\n",
" .round(2)\n",
" .alias(out_colname)\n",
" )\n",
" .drop([\"_lat0\", \"_lat1\", \"_dlon\", \"_dlat\", \"_a\"])\n",
" )\n",
"\n",
" if lon2_col is not None or lat2_col is not None:\n",
" logging.warning(\n",
" \"(haversine_df) 2nd position incorrectly specified. \"\n",
" + \"Calculating consecutive distances.\"\n",
" )\n",
"\n",
" required_cols += [date_var]\n",
" check_cols(df, required_cols, \"df\")\n",
" if reverse:\n",
" out_colname = rev_prefix + out_colname\n",
" if not sorted:\n",
" df = df.sort(date_var, descending=reverse)\n",
" return (\n",
" df.with_columns(\n",
" [\n",
" pl.col(lat_col).radians().alias(\"_lat0\"),\n",
" pl.col(lat_col).shift(n=-1).radians().alias(\"_lat1\"),\n",
" (pl.col(lon_col).shift(n=-1) - pl.col(lon_col))\n",
" .radians()\n",
" .alias(\"_dlon\"),\n",
" (pl.col(lat_col).shift(n=-1) - pl.col(lat_col))\n",
" .radians()\n",
" .alias(\"_dlat\"),\n",
" ]\n",
" )\n",
" .with_columns(\n",
" (\n",
" (pl.col(\"_dlat\") / 2).sin().pow(2)\n",
" + pl.col(\"_lat0\").cos()\n",
" * pl.col(\"_lat1\").cos()\n",
" * (pl.col(\"_dlon\") / 2).sin().pow(2)\n",
" ).alias(\"_a\")\n",
" )\n",
" .with_columns(\n",
" (2 * R * (pl.col(\"_a\").sqrt().arcsin()))\n",
" .round(2)\n",
" .fill_null(strategy=\"forward\")\n",
" .alias(out_colname)\n",
" )\n",
" .drop([\"_lat0\", \"_lat1\", \"_dlon\", \"_dlat\", \"_a\"])\n",
" )\n",
"\n",
"def intersect(a, b) -> set:\n",
" return set(a) & set(b)\n",
"\n",
"def nearby_ships(\n",
" lon: float,\n",
" lat: float,\n",
" pool: pl.DataFrame,\n",
" max_dist: float,\n",
" lon_col: str = \"lon\",\n",
" lat_col: str = \"lat\",\n",
" dt: datetime | None = None,\n",
" date_col: str | None = None,\n",
" dt_gap: timedelta | None = None,\n",
" filter_datetime: bool = False,\n",
") -> pl.DataFrame:\n",
" \"\"\"\n",
" Find observations nearby to a position in space (and optionally time).\n",
"\n",
" Get a frame of all records that are within a maximum distance of the\n",
" provided point.\n",
"\n",
" If filter_datetime is True, then only records from the same datetime will\n",
" be returned. If a specific filter is desired this should be performed\n",
" before calling this function and set filter_datetime to False.\n",
"\n",
" Parameters\n",
" ----------\n",
" lon : float\n",
" The longitude of the position.\n",
" lat : float\n",
" The latitude of the position.\n",
" pool : polars.DataFrame\n",
" The pool of records to search. Can be pre-filtered and filter_datetime\n",
" set to False.\n",
" max_dist : float\n",
" Will return records that have distance to the point <= this value.\n",
" lon_col : str\n",
" Name of the longitude column in the pool DataFrame\n",
" lat_col : str\n",
" Name of the latitude column in the pool DataFrame\n",
" dt : datetime | None\n",
" Datetime of the record. Must be set if filter_datetime is True.\n",
" date_col : str | None\n",
" Name of the datetime column in the pool. Must be set if filter_datetime\n",
" is True.\n",
" dt_gap : timedelta | None\n",
" Allowed time-gap for records. Records that fall between\n",
" dt - dt_gap and dt + dt_gap will be returned. If not set then only\n",
" records at dt will be returned. Applies if filter_datetime is True.\n",
" filter_datetime : bool\n",
" Only return records at the same datetime record as the input value. If\n",
" assessing multiple points with different datetimes, hence calling this\n",
" function frequently it will be more efficient to partition the pool\n",
" first, then set this value to False and only input the subset of data.\n",
"\n",
" Returns\n",
" -------\n",
" polars.DataFrame\n",
" Containing only records from the pool within max_dist of the input\n",
" point, optionally at the same datetime if filter_datetime is True.\n",
" \"\"\"\n",
" required_cols = [lon_col, lat_col]\n",
" check_cols(pool, required_cols, \"pool\")\n",
"\n",
" if filter_datetime:\n",
" if not dt or not date_col:\n",
" raise ValueError(\n",
" \"'dt' and 'date_col' must be provided if 'filter_datetime' \"\n",
" + \"is True\"\n",
" )\n",
" if date_col not in pool.columns:\n",
" raise ValueError(f\"'date_col' value {date_col} not found in pool.\")\n",
" if not dt_gap:\n",
" pool = pool.filter(pl.col(date_col).eq(dt))\n",
" else:\n",
" pool = pool.filter(\n",
" pl.col(date_col).is_between(\n",
" dt - dt_gap, dt + dt_gap, closed=\"both\"\n",
" )\n",
" )\n",
"\n",
" return (\n",
" pool.with_columns(\n",
" [pl.lit(lon).alias(\"_lon\"), pl.lit(lat).alias(\"_lat\")]\n",
" )\n",
" .pipe(\n",
" haversine_df,\n",
" lon_col=lon_col,\n",
" lat_col=lat_col,\n",
" out_colname=\"_dist\",\n",
" lon2_col=\"_lon\",\n",
" lat2_col=\"_lat\",\n",
" )\n",
" .filter(pl.col(\"_dist\").le(max_dist))\n",
" .drop([\"_dist\", \"_lon\", \"_lat\"])\n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "8b9279ed-6f89-4423-8833-acd0b365eb7b",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5.33 ms ± 20.1 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"rec = random.choice(test_recs)\n",
"nearby_ships(lon=rec.lon, lat=rec.lat, dt=rec.datetime, max_dist=dist, dt_gap=dt, date_col=\"datetime\", pool=df, filter_datetime=True)"
]
},
{
"cell_type": "markdown",
"id": "d148f129-9d8c-4c46-8f01-3e9c1e93e81a",
"metadata": {},
"source": [
"## Verify\n",
"\n",
"Check that records are the same"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "11f3d73a-fbe5-4f27-88d8-d0d687bd0eac",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 2.52 s, sys: 237 ms, total: 2.75 s\n",
"Wall time: 2.65 s\n"
]
}
],
"source": [
"%%time\n",
"dist = 250\n",
"for _ in range(250):\n",
" rec = Record(*random.choice(df.rows()))\n",
" orig = nearby_ships(lon=rec.lon, lat=rec.lat, dt=rec.datetime, max_dist=dist, dt_gap=dt, date_col=\"datetime\", pool=df, filter_datetime=True)\n",
" tree = otree.nearby_points(rec, dist=dist, t_dist=dt)\n",
" if orig.height > 0:\n",
" if not tree:\n",
" print(rec)\n",
" print(\"NO TREE!\")\n",
" print(f\"{orig = }\")\n",
" else:\n",
" tree = pl.from_records([(r.lon, r.lat, r.datetime, r.uid) for r in tree], orient=\"row\").rename({\"column_0\": \"lon\", \"column_1\": \"lat\", \"column_2\": \"datetime\", \"column_3\": \"uid\"})\n",
" if tree.height != orig.height:\n",
" print(\"Tree and Orig Heights Do Not Match\")\n",
" print(f\"{orig = }\")\n",
" print(f\"{tree = }\")\n",
" else:\n",
" # tree = tree.with_columns(pl.col(\"uid\").str.slice(0, 6))\n",
" if not tree.sort(\"uid\").equals(orig.sort(\"uid\")):\n",
" print(\"Tree and Orig Do Not Match\")\n",
" print(f\"{orig = }\")\n",
" print(f\"{tree = }\")"
]
},
{
"cell_type": "markdown",
"id": "1223529e-bfae-4b83-aba7-505d05e588d3",
"metadata": {},
"source": [
"## Check -180/180 boundary"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "4c392292-2d9f-4301-afb5-019fde069a1e",
"metadata": {},
"outputs": [],
"source": [
"out = otree.nearby_points(Record(179.5, -43.1, datetime(1900, 1, 14, 13)), dist=200, t_dist=timedelta(days=3))\n",
"for o in out:\n",
" print(o)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "GeoSpatialTools",
"language": "python",
"name": "geospatialtools"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
......@@ -28,7 +28,7 @@ description = "Tools for processing geo spatial data."
readme = "README.md"
license = {file = "LICENSE"}
keywords = [
"spatial", "geospatial", "quadtree", "octtree",
"spatial", "geospatial", "quadtree", "octtree", "nearest neighbour",
]
classifiers = [
"Development Status :: 1 - PreAlpha",
......@@ -38,8 +38,9 @@ classifiers = [
]
[project.optional-dependencies]
extra = [
notebooks = [
"ipykernel",
"polars"
]
test = [
"pytest",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment