diff --git a/AirSeaFluxCode.py b/AirSeaFluxCode.py
deleted file mode 100644
index 8d6b89347c4233f84fad9be47285f550dc422c82..0000000000000000000000000000000000000000
--- a/AirSeaFluxCode.py
+++ /dev/null
@@ -1,503 +0,0 @@
-import numpy as np
-import sys
-import logging
-#import metpy.constants as mpcon
-from flux_subs import (kappa, CtoK, get_heights, cdn_calc, cd_calc, get_skin,
-                       psim_calc, psit_calc, ctcq_calc, ctcqn_calc, get_gust,
-                       gc, q_calc, qsea_calc, qsat26sea, qsat26air,
-                       visc_air, psit_26, psiu_26)
-
-
-def AirSeaFluxCode(spd, T, SST, lat, RH, P, hin, hout, zi=600,
-                   Rl=None, Rs=None, jcool=1, meth="S88", n=10):
-    """ Calculates momentum and heat fluxes using different parameterizations
-
-    Parameters
-    ----------
-        meth : str
-            "S80","S88","LP82","YT96","UA","LY04","C30","C35","C40","ERA5"
-        spd : float
-            relative wind speed in m/s (is assumed as magnitude difference
-            between wind and surface current vectors)
-        T : float
-            air temperature in K (will convert if < 200)
-        SST : float
-            sea surface temperature in K (will convert if < 200)
-        lat : float
-            latitude (deg)
-        RH : float
-            relative humidity in %
-        P : float
-            air pressure
-        hin : float
-            sensor heights in m (array of 1->3 values: 1 -> u=t=q; /
-            2 -> u,t=q; 3 -> u,t,q ) default 10m
-        hout : float
-            output height, default is 10m
-        zi : int
-            PBL height (m) called in C35
-        Rl : float
-            downward longwave radiation (W/m^2)
-        Rs : float
-            downward shortwave radiation (W/m^2)
-        jcool : bool
-            0 if sst is true ocean skin temperature called in COARE
-        n : int
-            number of iterations
-
-    Returns
-    -------
-        res : array that contains
-                       1. momentum flux (W/m^2)
-                       2. sensible heat (W/m^2)
-                       3. latent heat (W/m^2)
-                       4. Monin-Obhukov length (mb)
-                       5. drag coefficient (cd)
-                       6. neutral drag coefficient (cdn)
-                       7. heat exhange coefficient (ct)
-                       8. neutral heat exhange coefficient (ctn)
-                       9. moisture exhange coefficient (cq)
-                       10. neutral moisture exhange coefficient (cqn)
-                       11. star virtual temperature (tsrv)
-                       12. star temperature (tsr)
-                       13. star humidity (qsr)
-                       14. star velocity (usr)
-                       15. momentum stability function (psim)
-                       16. heat stability funciton (psit)
-                       17. 10m neutral velocity (u10n)
-                       18. 10m neutral temperature (t10n)
-                       19. 10m neutral virtual temperature (tv10n)
-                       20. 10m neutral specific humidity (q10n)
-                       21. surface roughness length (zo)
-                       22. heat roughness length (zot)
-                       23. moisture roughness length (zoq)
-                       24. velocity at reference height (urefs)
-                       25. temperature at reference height (trefs)
-                       26. specific humidity at reference height (qrefs)
-                       27. number of iterations until convergence
-        ind : int
-            the indices in the matrix for the points that did not converge
-            after the maximum number of iterations
-    The code is based on bform.f and flux_calc.R modified by S. Biri
-    """
-    logging.basicConfig(filename='flux_calc.log',
-                        format='%(asctime)s %(message)s',level=logging.INFO)
-    ref_ht, tlapse = 10, 0.0098   # reference height, lapse rate
-    hh_in = get_heights(hin)      # heights of input measurements/fields
-    hh_out = get_heights(hout)    # desired height of output variables
-    if np.all(np.isnan(lat)):     # set latitude to 45deg if empty
-        lat=45*np.ones(spd.shape)
-    g = gc(lat, None)             # acceleration due to gravity
-    ctn, ct, cqn, cq = (np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan,
-                        np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan)
-    # if input values are nan break
-    if (np.all(np.isnan(spd)) or np.all(np.isnan(T)) or np.all(np.isnan(SST))):
-        sys.exit("input wind, T or SST is empty")
-        logging.debug('all input is nan')
-    if (np.all(np.isnan(RH)) and meth == "C35"):
-        RH = np.ones(spd.shape)*80  # if empty set to default for COARE3.5
-    elif (np.all(np.isnan(RH))):
-        sys.exit("input RH is empty")
-        logging.debug('input RH is empty')
-    if (np.all(np.isnan(P)) and (meth == "C30" or meth == "C40")):
-        P = np.ones(spd.shape)*1015  # if empty set to default for COARE3.0
-    elif ((np.all(np.isnan(P))) and meth == "C35"):
-        P = np.ones(spd.shape)*1013  # if empty set to default for COARE3.5
-    elif (np.all(np.isnan(P))):
-        sys.exit("input P is empty")
-        logging.debug('input P is empty')
-    if (np.all(np.isnan(Rl)) and meth == "C30"):
-        Rl = np.ones(spd.shape)*150    # set to default for COARE3.0
-    elif ((np.all(np.isnan(Rl)) and meth == "C35") or
-          (np.all(np.isnan(Rl)) and meth == "C40")):
-        Rl = np.ones(spd.shape)*370    # set to default for COARE3.5
-    if (np.all(np.isnan(Rs)) and meth == "C30"):
-        Rs = np.ones(spd.shape)*370  # set to default for COARE3.0
-    elif ((np.all(np.isnan(Rs))) and (meth == "C35" or meth == "C40")):
-        Rs = np.ones(spd.shape)*150  # set to default for COARE3.5
-    if ((np.all(np.isnan(zi))) and (meth == "C30" or meth == "C35" or
-        meth == "C40")):
-        zi = 600  # set to default for COARE3.5
-    elif ((np.all(np.isnan(zi))) and (meth == "ERA5" or meth == "UA")):
-        zi = 1000
-    if (np.all(np.isnan(lat)) and (meth == "C30" or meth == "C35" or
-        meth == "C40")):
-        lat=45*np.ones(np.shape(spd))
-    ####
-    th = np.where(np.nanmax(T) < 200, (np.copy(T)+CtoK) *
-                  np.power(1000/P,287.1/1004.67),
-                  np.copy(T)*np.power(1000/P,287.1/1004.67))  # potential T
-    Ta = np.where(np.nanmax(T) < 200, np.copy(T)+CtoK+tlapse*hh_in[1],
-                  np.copy(T)+tlapse*hh_in[1])  # convert to Kelvin if needed
-    sst = np.where(np.nanmax(SST) < 200, np.copy(SST)+CtoK, np.copy(SST))
-    if (meth == "C30" or meth == "C35" or meth == "C40"  or meth == "UA" or
-        meth == "ERA5"):
-        qsea = qsat26sea(sst, P)/1000  # surface water specific humidity (g/kg)
-        Q, _ = qsat26air(T, P, RH)     # specific humidity of air (g/kg)
-        qair = Q/1000
-        del Q
-        logging.info('method %s | qsea:%s, qair:%s', meth,
-                     np.ma.median(qsea[~np.isnan(qsea)]),
-                     np.ma.median(qair[~np.isnan(qair)]))
-    else:
-        qsea = qsea_calc(sst, P)
-        qair = q_calc(Ta, RH, P)
-        logging.info('method %s | qsea:%s, qair:%s', meth,
-                     np.ma.median(qsea[~np.isnan(qsea)]),
-                     np.ma.median(qair[~np.isnan(qair)]))
-    if (np.all(np.isnan(qsea)) or np.all(np.isnan(qair))):
-        print("qsea and qair cannot be nan")
-        logging.info('method %s qsea and qair cannot be nan | sst:%s, Ta:%s,'
-                      'P:%s, RH:%s', meth, np.ma.median(sst[~np.isnan(sst)]),
-                      np.ma.median(Ta[~np.isnan(Ta)]),
-                      np.ma.median(P[~np.isnan(P)]),
-                      np.ma.median(RH[~np.isnan(RH)]))
-    # first guesses
-    dt = Ta - sst
-    dq = qair - qsea
-    t10n, q10n = np.copy(Ta), np.copy(qair)
-    tv10n = t10n*(1 + 0.61*q10n)
-    #  Zeng et al. 1998
-    tv=th*(1.+0.61*qair)   # virtual potential T
-    dtv=dt*(1.+0.61*qair)+0.61*th*dq
-    # ------------
-#    rho = P*100/(287.1*tv10n)
-    rho = P*100/(287.1*(T+CtoK)*(1+0.61*qair))
-    # rho=P*100/(287.1*sst*(1+0.61*qsea))  # Zeng et al. 1998
-    lv = (2.501-0.00237*SST)*1e6
-    cp = 1004.67*(1 + 0.00084*qsea)
-#    cp = 1004.67  # Zeng et al. 1998, C3.0, C3.5
-    u10n = np.copy(spd)
-    monob = -100*np.ones(u10n.shape)  # Monin-Obukhov length
-    cdn = cdn_calc(u10n, Ta, None, lat, meth)
-    psim, psit, psiq = (np.zeros(u10n.shape), np.zeros(u10n.shape),
-                        np.zeros(u10n.shape))
-    cd = cd_calc(cdn, hh_in[0], ref_ht, psim)
-    tsr, tsrv = np.zeros(u10n.shape), np.zeros(u10n.shape)
-    qsr = np.zeros(u10n.shape)
-    if (meth == "UA"):
-        wind = np.where(dtv >= 0,np.where(spd > 0.1, spd, 0.1),
-                        np.sqrt(np.power(np.copy(spd),2)+np.power(0.5,2)))
-        usr = 0.06
-        for i in range(5):
-            zo = 0.013*np.power(usr,2)/g+0.11*visc_air(Ta)/usr
-            usr=kappa*wind/np.log(hh_in[0]/zo)
-        Rb = g*hh_in[0]*dtv/(tv*wind**2)
-        zol = np.where(Rb >= 0, Rb*np.log(hh_in[0]/zo) /
-                       (1-5*np.where(Rb < 0.19, Rb, 0.19)),
-                       Rb*np.log(hh_in[0]/zo))
-        monob = hh_in[0]/zol
-        zo = 0.013*np.power(usr, 2)/g + 0.11*visc_air(Ta)/usr
-        zot = zo/np.exp(2.67*np.power(usr*zo/visc_air(Ta), 0.25)-2.57)
-        zoq = zot
-        logging.info('method %s | wind:%s, usr:%s,'
-                     'zo:%s, zot:%s, zoq:%s, Rb:%s, monob:%s', meth,
-                     np.ma.median(wind[~np.isnan(wind)]),
-                     np.ma.median(usr[~np.isnan(usr)]),
-                     np.ma.median(zo[~np.isnan(zo)]),
-                     np.ma.median(zot[~np.isnan(zot)]),
-                     np.ma.median(zoq[~np.isnan(zoq)]),
-                     np.ma.median(Rb[~np.isnan(Rb)]),
-                     np.ma.median(monob[~np.isnan(monob)]))
-    elif (meth == "ERA5"):
-        wind = np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2))
-        usr = np.sqrt(cd*wind**2)
-        Rb = ((g*hh_in[0]*((2*dt)/(Ta+sst-g*hh_in[0]) +
-                0.61*dq))/np.power(wind, 2))
-        zo = 0.11*visc_air(Ta)/usr+0.018*np.power(usr, 2)/g
-        zot = 0.40*visc_air(Ta)/usr
-        zol = (Rb*((np.log((hh_in[0]+zo)/zo)-psim_calc((hh_in[0]+zo) /
-               monob, meth)+psim_calc(zo/monob, meth)) /
-               (np.log((hh_in[0]+zo)/zot) -
-               psit_calc((hh_in[0]+zo)/monob, meth) +
-               psit_calc(zot/monob, meth))))
-        monob = hh_in[0]/zol
-        logging.info('method %s | wind:%s, usr:%s,'
-                     'zo:%s, zot:%s, zoq:%s, Rb:%s, monob:%s', meth,
-                     np.ma.median(wind[~np.isnan(wind)]),
-                     np.ma.median(usr[~np.isnan(usr)]),
-                     np.ma.median(zo[~np.isnan(zo)]),
-                     np.ma.median(zot[~np.isnan(zot)]),
-                     np.ma.median(Rb[~np.isnan(Rb)]),
-                     np.ma.median(monob[~np.isnan(monob)]))
-    elif (meth == "C30" or meth == "C35" or meth == "C40"):
-        wind = np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2))
-        usr = 0.035*wind*np.log(10/1e-4)/np.log(hh_in[0]/1e-4)
-        a = 0.011*np.ones(T.shape)
-        a = np.where(wind > 10, 0.011+(wind-10)/(18-10)*(0.018-0.011),
-                         np.where(wind > 18, 0.018, a))
-        zo = a*np.power(usr, 2)/g+0.11*visc_air(T)/usr
-        rr = zo*usr/visc_air(T)
-        zoq = np.minimum(5e-5/np.power(rr, 0.6), 1.15e-4)
-        zot=zoq
-        Rb = g*hh_in[0]*dtv/((T+CtoK)*np.power(wind, 2))
-        zol =  (Rb*((np.log((hh_in[0]+zo)/zo)-psim_calc((hh_in[0]+zo) /
-               monob, meth)+psim_calc(zo/monob, meth)) /
-               (np.log((hh_in[0]+zo)/zot) -
-               psit_calc((hh_in[0]+zo)/monob, meth) +
-               psit_calc(zot/monob, meth))))
-        monob = hh_in[0]/zol
-#        wetc = 0.622*lv*qsea/(287.1*np.power(sst, 2))
-        tkt = 0.001*np.ones(T.shape)
-        Rnl = 0.97*(5.67e-8*np.power(sst-0.3*jcool+CtoK, 4)-Rl)
-        dter, dqer = np.ones(T.shape)*0.3, np.zeros(T.shape)*np.nan
-        logging.info('method %s | wind:%s, usr:%s,'
-                     'zo:%s, zot:%s, zoq:%s, Rb:%s, monob:%s', meth,
-                     np.ma.median(wind[~np.isnan(wind)]),
-                     np.ma.median(usr[~np.isnan(usr)]),
-                     np.ma.median(zo[~np.isnan(zo)]),
-                     np.ma.median(zot[~np.isnan(zot)]),
-                     np.ma.median(Rb[~np.isnan(Rb)]),
-                     np.ma.median(monob[~np.isnan(monob)]))
-    else:
-        wind = np.copy(spd)
-        zo, zot = 0.0001*np.ones(u10n.shape), 0.0001*np.ones(u10n.shape)
-        usr = np.sqrt(cd * wind**2)
-        logging.info('method %s | wind:%s, usr:%s,'
-                     'zo:%s, zot:%s, zoq:%s, Rb:%s, monob:%s', meth,
-                     np.ma.median(wind[~np.isnan(wind)]),
-                     np.ma.median(usr[~np.isnan(usr)]),
-                     np.ma.median(zo[~np.isnan(zo)]),
-                     np.ma.median(zot[~np.isnan(zot)]),
-                     np.ma.median(monob[~np.isnan(monob)]))
-    # tolerance for u,t,q,usr,tsr,qsr
-    tol = np.array([1e-06, 0.01, 5e-05, 1e-06, 0.001, 5e-07])
-    it, ind, ii, itera = 0, np.where(spd > 0), True, np.zeros(spd.shape)*np.nan
-    while np.any(ii):
-        it += 1
-        if it > n:
-            break
-        old = np.array([np.copy(u10n[ind]), np.copy(t10n[ind]),
-                       np.copy(q10n[ind]), np.copy(usr[ind]),
-                       np.copy(tsr[ind]), np.copy(qsr[ind])])
-        cdn[ind] = cdn_calc(u10n[ind], Ta[ind], None, lat[ind], meth)
-        if (np.all(np.isnan(cdn))):
-            break  # sys.exit("cdn cannot be nan")
-            logging.info('break %s at iteration %s cdn<0', meth, it)
-        zo[ind] = ref_ht/np.exp(kappa/np.sqrt(cdn[ind]))
-        psim[ind] = psim_calc(hh_in[0]/monob[ind], meth)
-        cd[ind] = cd_calc(cdn[ind], hh_in[0], ref_ht, psim[ind])
-        ctn[ind], cqn[ind] = ctcqn_calc(hh_in[1]/monob[ind], cdn[ind],
-                                        u10n[ind], zo[ind], Ta[ind], meth)
-        psit[ind] = psit_calc(hh_in[1]/monob[ind], meth)
-        psiq[ind] = psit_calc(hh_in[2]/monob[ind], meth)
-        ct[ind], cq[ind] = ctcq_calc(cdn[ind], cd[ind], ctn[ind], cqn[ind],
-                                     hh_in[1], hh_in[2], ref_ht,
-                                     psit[ind], psiq[ind])
-        if (meth == "UA"):
-            usr[ind] = np.where(hh_in[0]/monob[ind] < -1.574, kappa*wind[ind] /
-                                (np.log(-1.574*monob[ind]/zo[ind]) -
-                                psim_calc(-1.574, meth) +
-                                psim_calc(zo[ind]/monob[ind], meth) +
-                                1.14*(np.power(-hh_in[0]/monob[ind],1/3) -
-                                np.power(1.574,1/3))),
-                                np.where((hh_in[0]/monob[ind] > -1.574) &
-                                (hh_in[0]/monob[ind] < 0),
-                                kappa*wind[ind]/(np.log(hh_in[0]/zo[ind]) -
-                                psim_calc(hh_in[0]/monob[ind], meth) +
-                                psim_calc(zo[ind]/monob[ind], meth)),
-                                np.where((hh_in[0]/monob[ind] > 0) &
-                                (hh_in[0]/monob[ind] < 1),
-                                kappa*wind[ind]/(np.log(hh_in[0]/zo[ind]) +
-                                5*hh_in[0]/monob[ind]-5*zo[ind]/monob[ind]),
-                                kappa*wind[ind]/(np.log(monob[ind]/zo[ind]) +
-                                5-5*zo[ind]/monob[ind] +
-                                5*np.log(hh_in[0]/monob[ind]) +
-                                hh_in[0]/monob[ind]-1))))
-                                # Zeng et al. 1998 (7-10)
-            tsr[ind] = np.where(hh_in[1]/monob[ind] < -0.465, kappa*dt[ind] /
-                                (np.log((-0.465*monob[ind])/zot[ind]) -
-                                psit_calc(-0.465, meth)+0.8 *
-                                (np.power(0.465,-1/3) -
-                                np.power(-hh_in[1]/monob[ind],-1/3))),
-                                np.where((hh_in[1]/monob[ind]>-0.465) &
-                                (hh_in[1]/monob[ind]<0),
-                                kappa*dt[ind]/(np.log(hh_in[1]/zot[ind]) -
-                                psit_calc(hh_in[1]/monob[ind], meth) +
-                                psit_calc(zot[ind]/monob[ind], meth)),
-                                np.where((hh_in[1]/monob[ind]>0) &
-                                (hh_in[1]/monob[ind]<1),
-                                kappa*dt[ind]/(np.log(hh_in[1]/zot[ind]) +
-                                5*hh_in[1]/monob[ind]-5*zot[ind]/monob[ind]),
-                                kappa*dt[ind]/(np.log(monob[ind]/zot[ind])+5 -
-                                5**zot[ind]/monob[ind] +
-                                5*np.log(hh_in[1]/monob[ind]) +
-                                hh_in[1]/monob[ind]-1))))
-                                # Zeng et al. 1998 (11-14)
-            qsr[ind] = np.where(hh_in[2]/monob[ind] < -0.465, kappa*dq[ind] /
-                                (np.log((-0.465*monob[ind])/zoq[ind]) -
-                                psit_calc(-0.465, meth) +
-                                psit_calc(zoq[ind]/monob[ind], meth) +
-                                0.8*(np.power(0.465,-1/3) -
-                                np.power(-hh_in[2]/monob[ind],-1/3))),
-                                np.where((hh_in[2]/monob[ind]>-0.465) &
-                                (hh_in[2]/monob[ind]<0),
-                                kappa*dq[ind]/(np.log(hh_in[1]/zot[ind]) -
-                                psit_calc(hh_in[2]/monob[ind], meth) +
-                                psit_calc(zoq[ind]/monob[ind], meth)),
-                                np.where((hh_in[2]/monob[ind]>0) &
-                                (hh_in[2]/monob[ind]<1), kappa*dq[ind] /
-                                (np.log(hh_in[1]/zoq[ind]) +
-                                5*hh_in[2]/monob[ind]-5*zoq[ind]/monob[ind]),
-                                kappa*dq[ind]/(np.log(monob[ind]/zoq[ind])+5 -
-                                5*zoq[ind]/monob[ind] +
-                                5*np.log(hh_in[2]/monob[ind]) +
-                                hh_in[2]/monob[ind]-1))))
-        elif (meth == "C30" or meth == "C35" or meth == "C40"):
-            usr[ind] = (wind[ind]*kappa/(np.log(hh_in[0]/zo[ind]) -
-                        psiu_26(hh_in[0]/monob[ind], meth)))
-            dter[ind], dqer[ind], tkt[ind] = get_skin(sst[ind], qsea[ind],
-                                                      rho[ind], Rl[ind],
-                                                      Rs[ind], Rnl[ind],
-                                                      cp[ind], lv[ind],
-                                                      np.copy(tkt[ind]),
-                                                      usr[ind], tsr[ind],
-                                                      qsr[ind], lat[ind])
-            logging.info('method %s | dter = %s | Rnl = %s '
-                         '| usr = %s | tsr = %s | qsr = %s', meth,
-                         np.ma.median(dter[~np.isnan(dter)]),
-                         np.ma.median(Rnl[~np.isnan(Rnl)]),
-                         np.ma.median(usr[~np.isnan(usr)]),
-                         np.ma.median(tsr[~np.isnan(tsr)]),
-                         np.ma.median(qsr[~np.isnan(qsr)]))
-            qsr[ind] = ((dq[ind]+dqer[ind]*jcool)*(kappa /
-                        (np.log(hin[2]/zoq[ind])-psit_26(hin[2]/monob[ind]))))
-            tsr[ind] = ((dt[ind]+dter[ind]*jcool)*(kappa /
-                        (np.log(hin[1]/zot[ind])-psit_26(hin[1]/monob[ind]))))
-            Rnl[ind] = 0.97*(5.67e-8*np.power(SST[ind] -
-                             dter[ind]*jcool+CtoK, 4)-Rl[ind])
-        else:
-            usr[ind] = np.sqrt(cd[ind]*wind[ind]**2)
-            tsr[ind] = ct[ind]*wind[ind]*dt[ind]/usr[ind]
-            qsr[ind] = cq[ind]*wind[ind]*dq[ind]/usr[ind]
-        fact = (np.log(hh_in[1]/ref_ht)-psit[ind])/kappa
-        t10n[ind] = Ta[ind] - (tsr[ind]*fact)
-        fact = (np.log(hh_in[2]/ref_ht)-psiq[ind])/kappa
-        q10n[ind] = qair[ind] - (qsr[ind]*fact)
-        tv10n[ind] = t10n[ind]*(1+0.61*q10n[ind])
-        if (meth == "UA"):
-            tsrv[ind] = tsr[ind]*(1.+0.61*qair[ind])+0.61*th[ind]*qsr[ind]
-            monob[ind] = (tv[ind]*np.power(usr[ind], 2))/(kappa*g[ind]*tsrv[ind])
-        elif (meth == "C30" or meth == "C35" or meth == "C40"):
-            tsrv[ind] = tsr[ind]+0.61*(T[ind]+CtoK)*qsr[ind]
-            zol[ind] = (kappa*g[ind]*hh_in[0]/(T[ind]+CtoK)*(tsr[ind] +
-                        0.61*(T[ind]+CtoK)*qsr[ind])/np.power(usr[ind], 2))
-            monob[ind] = hh_in[0]/zol[ind]
-        elif (meth == "ERA5"):
-            tsrv[ind] = tsr[ind]+0.61*t10n[ind]*qsr[ind]
-            Rb[ind] = ((g[ind]*hh_in[0]*((2*dt[ind])/(Ta[ind]+sst[ind]-g[ind] *
-                       hh_in[0])+0.61*dq[ind]))/np.power(wind[ind], 2))
-            zo[ind] = (0.11*visc_air(Ta[ind])/usr[ind]+0.018 *
-                       np.power(usr[ind], 2)/g[ind])
-            zot[ind] = 0.40*visc_air(Ta[ind])/usr[ind]
-            zol[ind] = (Rb[ind]*((np.log((hh_in[0]+zo[ind])/zo[ind]) -
-                        psim_calc((hh_in[0]+zo[ind])/monob[ind], meth) +
-                        psim_calc(zo[ind]/monob[ind], meth)) /
-                        (np.log((hh_in[0]+zo[ind])/zot[ind]) -
-                        psit_calc((hh_in[0]+zo[ind])/monob[ind], meth) +
-                        psit_calc(zot[ind]/monob[ind], meth))))
-            monob[ind] = hh_in[0]/zol[ind]
-        else:
-            tsrv[ind] = tsr[ind]+0.61*t10n[ind]*qsr[ind]
-            monob[ind] = (tv10n[ind]*usr[ind]**2)/(g[ind]*kappa*tsrv[ind])
-        psim[ind] = psim_calc(hh_in[0]/monob[ind], meth)
-        psit[ind] = psit_calc(hh_in[1]/monob[ind], meth)
-        psiq[ind] = psit_calc(hh_in[2]/monob[ind], meth)
-        if (meth == "UA"):
-            wind[ind] = np.where(dtv[ind] >= 0, np.where(spd[ind] > 0.1,
-                                 spd[ind], 0.1),
-                                 np.sqrt(np.power(np.copy(spd[ind]), 2) +
-                                 np.power(get_gust(1,tv[ind], usr[ind],
-                                 tsrv[ind], zi, lat[ind]), 2)))
-                                 # Zeng et al. 1998 (20)
-            u10n[ind] = (wind[ind]-(usr[ind]/kappa)*(np.log(hh_in[0]/10) -
-                         psim[ind]))
-            u10n[u10n < 0] = np.nan
-        elif (meth == "C30" or meth == "C35" or meth == "C40"):
-            wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) +
-                                np.power(get_gust(1.2, Ta[ind], usr[ind],
-                                tsrv[ind], zi, lat[ind]), 2))
-            u10n[ind] = ((wind[ind] + usr[ind]/kappa*(np.log(10/hh_in[0])-
-                         psiu_26(10/monob[ind], meth) +
-                         psiu_26(hh_in[0]/monob[ind], meth)) +
-                         psiu_26(10/monob[ind], meth)*usr[ind]/kappa /
-                         (wind[ind]/spd[ind])))
-            u10n[u10n < 0] = np.nan
-        elif (meth == "ERA5"):
-            wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) +
-                                np.power(get_gust(1, Ta[ind], usr[ind],
-                                tsrv[ind], zi, lat[ind]), 2))
-            u10n[ind] = (spd[ind]+(usr[ind]/kappa)*(np.log(hh_in[0] /
-                         ref_ht)-psim[ind]))
-            u10n[u10n < 0] = np.nan
-        else:
-            u10n[ind] = (wind[ind]-(usr[ind]/kappa)*(np.log(hh_in[0]/10) -
-                         psim[ind]))
-            u10n[u10n < 0] = np.nan
-        new = np.array([np.copy(u10n[ind]), np.copy(t10n[ind]),
-                       np.copy(q10n[ind]), np.copy(usr[ind]),
-                       np.copy(tsr[ind]), np.copy(qsr[ind])])
-        d = np.abs(new-old)
-        ind = np.where((d[0, :] > tol[0])+(d[1, :] > tol[1]) +
-                       (d[2, :] > tol[2])+(d[3, :] > tol[3]) +
-                       (d[4, :] > tol[4])+(d[5, :] > tol[5]))
-        itera[ind] = np.ones(1)*it
-        if np.shape(ind)[0] == 0:
-            break
-        else:
-            ii = ((d[0, ind] > tol[0])+(d[1, ind] > tol[1]) +
-                  (d[2, ind] > tol[2])+(d[3, ind] > tol[3]) +
-                  (d[4, ind] > tol[4])+(d[5, ind] > tol[5]))
-    logging.info('method %s | # of iterations:%s', meth, np.ma.median(it))
-    logging.info('method %s | # of points that did not converge :%s', meth,
-                  np.shape(ind))
-    # calculate output parameters
-#    rho = (0.34838*P)/(tv10n)
-    rho = P*100./(287.1*(T+CtoK)*(1+0.61*qair))  # C35
-    t10n = t10n-(273.16+tlapse*ref_ht)
-    sensible = -1*tsr*usr*cp*rho
-    latent = -1*qsr*usr*lv*rho
-    if (meth == "C30" or meth == "C35" or meth == "C40" or meth == "UA" or
-        meth == "ERA5"):
-        tau = rho*np.power(usr, 2)*(spd/wind)
-    else:
-        tau = rho*np.power(usr, 2)
-    zo = ref_ht/np.exp(kappa/cdn**0.5)
-    zot = ref_ht/(np.exp(kappa**2/(ctn*np.log(ref_ht/zo))))
-    zoq = ref_ht/(np.exp(kappa**2/(cqn*np.log(ref_ht/zo))))
-    urefs = (spd-(usr/kappa)*(np.log(hh_in[0]/hh_out[0])-psim +
-             psim_calc(hh_out[0]/monob, meth)))
-    trefs = (Ta-(tsr/kappa)*(np.log(hh_in[1]/hh_out[1])-psit +
-             psit_calc(hh_out[0]/monob, meth)))
-    trefs = trefs-(273.16+tlapse*hh_out[1])
-    qrefs = (qair-(qsr/kappa)*(np.log(hh_in[2]/hh_out[2]) -
-             psit+psit_calc(hh_out[2]/monob, meth)))
-    res = np.zeros((27, len(spd)))
-    res[0][:] = tau
-    res[1][:] = sensible
-    res[2][:] = latent
-    res[3][:] = monob
-    res[4][:] = cd
-    res[5][:] = cdn
-    res[6][:] = ct
-    res[7][:] = ctn
-    res[8][:] = cq
-    res[9][:] = cqn
-    res[10][:] = tsrv
-    res[11][:] = tsr
-    res[12][:] = qsr
-    res[13][:] = usr
-    res[14][:] = psim
-    res[15][:] = psit
-    res[16][:] = u10n
-    res[17][:] = t10n
-    res[18][:] = tv10n
-    res[19][:] = q10n
-    res[20][:] = zo
-    res[21][:] = zot
-    res[22][:] = zoq
-    res[23][:] = urefs
-    res[24][:] = trefs
-    res[25][:] = qrefs
-    res[26][:] = itera
-    return res, ind