diff --git a/AirSeaFluxCode.py b/AirSeaFluxCode.py deleted file mode 100644 index 8d6b89347c4233f84fad9be47285f550dc422c82..0000000000000000000000000000000000000000 --- a/AirSeaFluxCode.py +++ /dev/null @@ -1,503 +0,0 @@ -import numpy as np -import sys -import logging -#import metpy.constants as mpcon -from flux_subs import (kappa, CtoK, get_heights, cdn_calc, cd_calc, get_skin, - psim_calc, psit_calc, ctcq_calc, ctcqn_calc, get_gust, - gc, q_calc, qsea_calc, qsat26sea, qsat26air, - visc_air, psit_26, psiu_26) - - -def AirSeaFluxCode(spd, T, SST, lat, RH, P, hin, hout, zi=600, - Rl=None, Rs=None, jcool=1, meth="S88", n=10): - """ Calculates momentum and heat fluxes using different parameterizations - - Parameters - ---------- - meth : str - "S80","S88","LP82","YT96","UA","LY04","C30","C35","C40","ERA5" - spd : float - relative wind speed in m/s (is assumed as magnitude difference - between wind and surface current vectors) - T : float - air temperature in K (will convert if < 200) - SST : float - sea surface temperature in K (will convert if < 200) - lat : float - latitude (deg) - RH : float - relative humidity in % - P : float - air pressure - hin : float - sensor heights in m (array of 1->3 values: 1 -> u=t=q; / - 2 -> u,t=q; 3 -> u,t,q ) default 10m - hout : float - output height, default is 10m - zi : int - PBL height (m) called in C35 - Rl : float - downward longwave radiation (W/m^2) - Rs : float - downward shortwave radiation (W/m^2) - jcool : bool - 0 if sst is true ocean skin temperature called in COARE - n : int - number of iterations - - Returns - ------- - res : array that contains - 1. momentum flux (W/m^2) - 2. sensible heat (W/m^2) - 3. latent heat (W/m^2) - 4. Monin-Obhukov length (mb) - 5. drag coefficient (cd) - 6. neutral drag coefficient (cdn) - 7. heat exhange coefficient (ct) - 8. neutral heat exhange coefficient (ctn) - 9. moisture exhange coefficient (cq) - 10. neutral moisture exhange coefficient (cqn) - 11. star virtual temperature (tsrv) - 12. star temperature (tsr) - 13. star humidity (qsr) - 14. star velocity (usr) - 15. momentum stability function (psim) - 16. heat stability funciton (psit) - 17. 10m neutral velocity (u10n) - 18. 10m neutral temperature (t10n) - 19. 10m neutral virtual temperature (tv10n) - 20. 10m neutral specific humidity (q10n) - 21. surface roughness length (zo) - 22. heat roughness length (zot) - 23. moisture roughness length (zoq) - 24. velocity at reference height (urefs) - 25. temperature at reference height (trefs) - 26. specific humidity at reference height (qrefs) - 27. number of iterations until convergence - ind : int - the indices in the matrix for the points that did not converge - after the maximum number of iterations - The code is based on bform.f and flux_calc.R modified by S. Biri - """ - logging.basicConfig(filename='flux_calc.log', - format='%(asctime)s %(message)s',level=logging.INFO) - ref_ht, tlapse = 10, 0.0098 # reference height, lapse rate - hh_in = get_heights(hin) # heights of input measurements/fields - hh_out = get_heights(hout) # desired height of output variables - if np.all(np.isnan(lat)): # set latitude to 45deg if empty - lat=45*np.ones(spd.shape) - g = gc(lat, None) # acceleration due to gravity - ctn, ct, cqn, cq = (np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan, - np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan) - # if input values are nan break - if (np.all(np.isnan(spd)) or np.all(np.isnan(T)) or np.all(np.isnan(SST))): - sys.exit("input wind, T or SST is empty") - logging.debug('all input is nan') - if (np.all(np.isnan(RH)) and meth == "C35"): - RH = np.ones(spd.shape)*80 # if empty set to default for COARE3.5 - elif (np.all(np.isnan(RH))): - sys.exit("input RH is empty") - logging.debug('input RH is empty') - if (np.all(np.isnan(P)) and (meth == "C30" or meth == "C40")): - P = np.ones(spd.shape)*1015 # if empty set to default for COARE3.0 - elif ((np.all(np.isnan(P))) and meth == "C35"): - P = np.ones(spd.shape)*1013 # if empty set to default for COARE3.5 - elif (np.all(np.isnan(P))): - sys.exit("input P is empty") - logging.debug('input P is empty') - if (np.all(np.isnan(Rl)) and meth == "C30"): - Rl = np.ones(spd.shape)*150 # set to default for COARE3.0 - elif ((np.all(np.isnan(Rl)) and meth == "C35") or - (np.all(np.isnan(Rl)) and meth == "C40")): - Rl = np.ones(spd.shape)*370 # set to default for COARE3.5 - if (np.all(np.isnan(Rs)) and meth == "C30"): - Rs = np.ones(spd.shape)*370 # set to default for COARE3.0 - elif ((np.all(np.isnan(Rs))) and (meth == "C35" or meth == "C40")): - Rs = np.ones(spd.shape)*150 # set to default for COARE3.5 - if ((np.all(np.isnan(zi))) and (meth == "C30" or meth == "C35" or - meth == "C40")): - zi = 600 # set to default for COARE3.5 - elif ((np.all(np.isnan(zi))) and (meth == "ERA5" or meth == "UA")): - zi = 1000 - if (np.all(np.isnan(lat)) and (meth == "C30" or meth == "C35" or - meth == "C40")): - lat=45*np.ones(np.shape(spd)) - #### - th = np.where(np.nanmax(T) < 200, (np.copy(T)+CtoK) * - np.power(1000/P,287.1/1004.67), - np.copy(T)*np.power(1000/P,287.1/1004.67)) # potential T - Ta = np.where(np.nanmax(T) < 200, np.copy(T)+CtoK+tlapse*hh_in[1], - np.copy(T)+tlapse*hh_in[1]) # convert to Kelvin if needed - sst = np.where(np.nanmax(SST) < 200, np.copy(SST)+CtoK, np.copy(SST)) - if (meth == "C30" or meth == "C35" or meth == "C40" or meth == "UA" or - meth == "ERA5"): - qsea = qsat26sea(sst, P)/1000 # surface water specific humidity (g/kg) - Q, _ = qsat26air(T, P, RH) # specific humidity of air (g/kg) - qair = Q/1000 - del Q - logging.info('method %s | qsea:%s, qair:%s', meth, - np.ma.median(qsea[~np.isnan(qsea)]), - np.ma.median(qair[~np.isnan(qair)])) - else: - qsea = qsea_calc(sst, P) - qair = q_calc(Ta, RH, P) - logging.info('method %s | qsea:%s, qair:%s', meth, - np.ma.median(qsea[~np.isnan(qsea)]), - np.ma.median(qair[~np.isnan(qair)])) - if (np.all(np.isnan(qsea)) or np.all(np.isnan(qair))): - print("qsea and qair cannot be nan") - logging.info('method %s qsea and qair cannot be nan | sst:%s, Ta:%s,' - 'P:%s, RH:%s', meth, np.ma.median(sst[~np.isnan(sst)]), - np.ma.median(Ta[~np.isnan(Ta)]), - np.ma.median(P[~np.isnan(P)]), - np.ma.median(RH[~np.isnan(RH)])) - # first guesses - dt = Ta - sst - dq = qair - qsea - t10n, q10n = np.copy(Ta), np.copy(qair) - tv10n = t10n*(1 + 0.61*q10n) - # Zeng et al. 1998 - tv=th*(1.+0.61*qair) # virtual potential T - dtv=dt*(1.+0.61*qair)+0.61*th*dq - # ------------ -# rho = P*100/(287.1*tv10n) - rho = P*100/(287.1*(T+CtoK)*(1+0.61*qair)) - # rho=P*100/(287.1*sst*(1+0.61*qsea)) # Zeng et al. 1998 - lv = (2.501-0.00237*SST)*1e6 - cp = 1004.67*(1 + 0.00084*qsea) -# cp = 1004.67 # Zeng et al. 1998, C3.0, C3.5 - u10n = np.copy(spd) - monob = -100*np.ones(u10n.shape) # Monin-Obukhov length - cdn = cdn_calc(u10n, Ta, None, lat, meth) - psim, psit, psiq = (np.zeros(u10n.shape), np.zeros(u10n.shape), - np.zeros(u10n.shape)) - cd = cd_calc(cdn, hh_in[0], ref_ht, psim) - tsr, tsrv = np.zeros(u10n.shape), np.zeros(u10n.shape) - qsr = np.zeros(u10n.shape) - if (meth == "UA"): - wind = np.where(dtv >= 0,np.where(spd > 0.1, spd, 0.1), - np.sqrt(np.power(np.copy(spd),2)+np.power(0.5,2))) - usr = 0.06 - for i in range(5): - zo = 0.013*np.power(usr,2)/g+0.11*visc_air(Ta)/usr - usr=kappa*wind/np.log(hh_in[0]/zo) - Rb = g*hh_in[0]*dtv/(tv*wind**2) - zol = np.where(Rb >= 0, Rb*np.log(hh_in[0]/zo) / - (1-5*np.where(Rb < 0.19, Rb, 0.19)), - Rb*np.log(hh_in[0]/zo)) - monob = hh_in[0]/zol - zo = 0.013*np.power(usr, 2)/g + 0.11*visc_air(Ta)/usr - zot = zo/np.exp(2.67*np.power(usr*zo/visc_air(Ta), 0.25)-2.57) - zoq = zot - logging.info('method %s | wind:%s, usr:%s,' - 'zo:%s, zot:%s, zoq:%s, Rb:%s, monob:%s', meth, - np.ma.median(wind[~np.isnan(wind)]), - np.ma.median(usr[~np.isnan(usr)]), - np.ma.median(zo[~np.isnan(zo)]), - np.ma.median(zot[~np.isnan(zot)]), - np.ma.median(zoq[~np.isnan(zoq)]), - np.ma.median(Rb[~np.isnan(Rb)]), - np.ma.median(monob[~np.isnan(monob)])) - elif (meth == "ERA5"): - wind = np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2)) - usr = np.sqrt(cd*wind**2) - Rb = ((g*hh_in[0]*((2*dt)/(Ta+sst-g*hh_in[0]) + - 0.61*dq))/np.power(wind, 2)) - zo = 0.11*visc_air(Ta)/usr+0.018*np.power(usr, 2)/g - zot = 0.40*visc_air(Ta)/usr - zol = (Rb*((np.log((hh_in[0]+zo)/zo)-psim_calc((hh_in[0]+zo) / - monob, meth)+psim_calc(zo/monob, meth)) / - (np.log((hh_in[0]+zo)/zot) - - psit_calc((hh_in[0]+zo)/monob, meth) + - psit_calc(zot/monob, meth)))) - monob = hh_in[0]/zol - logging.info('method %s | wind:%s, usr:%s,' - 'zo:%s, zot:%s, zoq:%s, Rb:%s, monob:%s', meth, - np.ma.median(wind[~np.isnan(wind)]), - np.ma.median(usr[~np.isnan(usr)]), - np.ma.median(zo[~np.isnan(zo)]), - np.ma.median(zot[~np.isnan(zot)]), - np.ma.median(Rb[~np.isnan(Rb)]), - np.ma.median(monob[~np.isnan(monob)])) - elif (meth == "C30" or meth == "C35" or meth == "C40"): - wind = np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2)) - usr = 0.035*wind*np.log(10/1e-4)/np.log(hh_in[0]/1e-4) - a = 0.011*np.ones(T.shape) - a = np.where(wind > 10, 0.011+(wind-10)/(18-10)*(0.018-0.011), - np.where(wind > 18, 0.018, a)) - zo = a*np.power(usr, 2)/g+0.11*visc_air(T)/usr - rr = zo*usr/visc_air(T) - zoq = np.minimum(5e-5/np.power(rr, 0.6), 1.15e-4) - zot=zoq - Rb = g*hh_in[0]*dtv/((T+CtoK)*np.power(wind, 2)) - zol = (Rb*((np.log((hh_in[0]+zo)/zo)-psim_calc((hh_in[0]+zo) / - monob, meth)+psim_calc(zo/monob, meth)) / - (np.log((hh_in[0]+zo)/zot) - - psit_calc((hh_in[0]+zo)/monob, meth) + - psit_calc(zot/monob, meth)))) - monob = hh_in[0]/zol -# wetc = 0.622*lv*qsea/(287.1*np.power(sst, 2)) - tkt = 0.001*np.ones(T.shape) - Rnl = 0.97*(5.67e-8*np.power(sst-0.3*jcool+CtoK, 4)-Rl) - dter, dqer = np.ones(T.shape)*0.3, np.zeros(T.shape)*np.nan - logging.info('method %s | wind:%s, usr:%s,' - 'zo:%s, zot:%s, zoq:%s, Rb:%s, monob:%s', meth, - np.ma.median(wind[~np.isnan(wind)]), - np.ma.median(usr[~np.isnan(usr)]), - np.ma.median(zo[~np.isnan(zo)]), - np.ma.median(zot[~np.isnan(zot)]), - np.ma.median(Rb[~np.isnan(Rb)]), - np.ma.median(monob[~np.isnan(monob)])) - else: - wind = np.copy(spd) - zo, zot = 0.0001*np.ones(u10n.shape), 0.0001*np.ones(u10n.shape) - usr = np.sqrt(cd * wind**2) - logging.info('method %s | wind:%s, usr:%s,' - 'zo:%s, zot:%s, zoq:%s, Rb:%s, monob:%s', meth, - np.ma.median(wind[~np.isnan(wind)]), - np.ma.median(usr[~np.isnan(usr)]), - np.ma.median(zo[~np.isnan(zo)]), - np.ma.median(zot[~np.isnan(zot)]), - np.ma.median(monob[~np.isnan(monob)])) - # tolerance for u,t,q,usr,tsr,qsr - tol = np.array([1e-06, 0.01, 5e-05, 1e-06, 0.001, 5e-07]) - it, ind, ii, itera = 0, np.where(spd > 0), True, np.zeros(spd.shape)*np.nan - while np.any(ii): - it += 1 - if it > n: - break - old = np.array([np.copy(u10n[ind]), np.copy(t10n[ind]), - np.copy(q10n[ind]), np.copy(usr[ind]), - np.copy(tsr[ind]), np.copy(qsr[ind])]) - cdn[ind] = cdn_calc(u10n[ind], Ta[ind], None, lat[ind], meth) - if (np.all(np.isnan(cdn))): - break # sys.exit("cdn cannot be nan") - logging.info('break %s at iteration %s cdn<0', meth, it) - zo[ind] = ref_ht/np.exp(kappa/np.sqrt(cdn[ind])) - psim[ind] = psim_calc(hh_in[0]/monob[ind], meth) - cd[ind] = cd_calc(cdn[ind], hh_in[0], ref_ht, psim[ind]) - ctn[ind], cqn[ind] = ctcqn_calc(hh_in[1]/monob[ind], cdn[ind], - u10n[ind], zo[ind], Ta[ind], meth) - psit[ind] = psit_calc(hh_in[1]/monob[ind], meth) - psiq[ind] = psit_calc(hh_in[2]/monob[ind], meth) - ct[ind], cq[ind] = ctcq_calc(cdn[ind], cd[ind], ctn[ind], cqn[ind], - hh_in[1], hh_in[2], ref_ht, - psit[ind], psiq[ind]) - if (meth == "UA"): - usr[ind] = np.where(hh_in[0]/monob[ind] < -1.574, kappa*wind[ind] / - (np.log(-1.574*monob[ind]/zo[ind]) - - psim_calc(-1.574, meth) + - psim_calc(zo[ind]/monob[ind], meth) + - 1.14*(np.power(-hh_in[0]/monob[ind],1/3) - - np.power(1.574,1/3))), - np.where((hh_in[0]/monob[ind] > -1.574) & - (hh_in[0]/monob[ind] < 0), - kappa*wind[ind]/(np.log(hh_in[0]/zo[ind]) - - psim_calc(hh_in[0]/monob[ind], meth) + - psim_calc(zo[ind]/monob[ind], meth)), - np.where((hh_in[0]/monob[ind] > 0) & - (hh_in[0]/monob[ind] < 1), - kappa*wind[ind]/(np.log(hh_in[0]/zo[ind]) + - 5*hh_in[0]/monob[ind]-5*zo[ind]/monob[ind]), - kappa*wind[ind]/(np.log(monob[ind]/zo[ind]) + - 5-5*zo[ind]/monob[ind] + - 5*np.log(hh_in[0]/monob[ind]) + - hh_in[0]/monob[ind]-1)))) - # Zeng et al. 1998 (7-10) - tsr[ind] = np.where(hh_in[1]/monob[ind] < -0.465, kappa*dt[ind] / - (np.log((-0.465*monob[ind])/zot[ind]) - - psit_calc(-0.465, meth)+0.8 * - (np.power(0.465,-1/3) - - np.power(-hh_in[1]/monob[ind],-1/3))), - np.where((hh_in[1]/monob[ind]>-0.465) & - (hh_in[1]/monob[ind]<0), - kappa*dt[ind]/(np.log(hh_in[1]/zot[ind]) - - psit_calc(hh_in[1]/monob[ind], meth) + - psit_calc(zot[ind]/monob[ind], meth)), - np.where((hh_in[1]/monob[ind]>0) & - (hh_in[1]/monob[ind]<1), - kappa*dt[ind]/(np.log(hh_in[1]/zot[ind]) + - 5*hh_in[1]/monob[ind]-5*zot[ind]/monob[ind]), - kappa*dt[ind]/(np.log(monob[ind]/zot[ind])+5 - - 5**zot[ind]/monob[ind] + - 5*np.log(hh_in[1]/monob[ind]) + - hh_in[1]/monob[ind]-1)))) - # Zeng et al. 1998 (11-14) - qsr[ind] = np.where(hh_in[2]/monob[ind] < -0.465, kappa*dq[ind] / - (np.log((-0.465*monob[ind])/zoq[ind]) - - psit_calc(-0.465, meth) + - psit_calc(zoq[ind]/monob[ind], meth) + - 0.8*(np.power(0.465,-1/3) - - np.power(-hh_in[2]/monob[ind],-1/3))), - np.where((hh_in[2]/monob[ind]>-0.465) & - (hh_in[2]/monob[ind]<0), - kappa*dq[ind]/(np.log(hh_in[1]/zot[ind]) - - psit_calc(hh_in[2]/monob[ind], meth) + - psit_calc(zoq[ind]/monob[ind], meth)), - np.where((hh_in[2]/monob[ind]>0) & - (hh_in[2]/monob[ind]<1), kappa*dq[ind] / - (np.log(hh_in[1]/zoq[ind]) + - 5*hh_in[2]/monob[ind]-5*zoq[ind]/monob[ind]), - kappa*dq[ind]/(np.log(monob[ind]/zoq[ind])+5 - - 5*zoq[ind]/monob[ind] + - 5*np.log(hh_in[2]/monob[ind]) + - hh_in[2]/monob[ind]-1)))) - elif (meth == "C30" or meth == "C35" or meth == "C40"): - usr[ind] = (wind[ind]*kappa/(np.log(hh_in[0]/zo[ind]) - - psiu_26(hh_in[0]/monob[ind], meth))) - dter[ind], dqer[ind], tkt[ind] = get_skin(sst[ind], qsea[ind], - rho[ind], Rl[ind], - Rs[ind], Rnl[ind], - cp[ind], lv[ind], - np.copy(tkt[ind]), - usr[ind], tsr[ind], - qsr[ind], lat[ind]) - logging.info('method %s | dter = %s | Rnl = %s ' - '| usr = %s | tsr = %s | qsr = %s', meth, - np.ma.median(dter[~np.isnan(dter)]), - np.ma.median(Rnl[~np.isnan(Rnl)]), - np.ma.median(usr[~np.isnan(usr)]), - np.ma.median(tsr[~np.isnan(tsr)]), - np.ma.median(qsr[~np.isnan(qsr)])) - qsr[ind] = ((dq[ind]+dqer[ind]*jcool)*(kappa / - (np.log(hin[2]/zoq[ind])-psit_26(hin[2]/monob[ind])))) - tsr[ind] = ((dt[ind]+dter[ind]*jcool)*(kappa / - (np.log(hin[1]/zot[ind])-psit_26(hin[1]/monob[ind])))) - Rnl[ind] = 0.97*(5.67e-8*np.power(SST[ind] - - dter[ind]*jcool+CtoK, 4)-Rl[ind]) - else: - usr[ind] = np.sqrt(cd[ind]*wind[ind]**2) - tsr[ind] = ct[ind]*wind[ind]*dt[ind]/usr[ind] - qsr[ind] = cq[ind]*wind[ind]*dq[ind]/usr[ind] - fact = (np.log(hh_in[1]/ref_ht)-psit[ind])/kappa - t10n[ind] = Ta[ind] - (tsr[ind]*fact) - fact = (np.log(hh_in[2]/ref_ht)-psiq[ind])/kappa - q10n[ind] = qair[ind] - (qsr[ind]*fact) - tv10n[ind] = t10n[ind]*(1+0.61*q10n[ind]) - if (meth == "UA"): - tsrv[ind] = tsr[ind]*(1.+0.61*qair[ind])+0.61*th[ind]*qsr[ind] - monob[ind] = (tv[ind]*np.power(usr[ind], 2))/(kappa*g[ind]*tsrv[ind]) - elif (meth == "C30" or meth == "C35" or meth == "C40"): - tsrv[ind] = tsr[ind]+0.61*(T[ind]+CtoK)*qsr[ind] - zol[ind] = (kappa*g[ind]*hh_in[0]/(T[ind]+CtoK)*(tsr[ind] + - 0.61*(T[ind]+CtoK)*qsr[ind])/np.power(usr[ind], 2)) - monob[ind] = hh_in[0]/zol[ind] - elif (meth == "ERA5"): - tsrv[ind] = tsr[ind]+0.61*t10n[ind]*qsr[ind] - Rb[ind] = ((g[ind]*hh_in[0]*((2*dt[ind])/(Ta[ind]+sst[ind]-g[ind] * - hh_in[0])+0.61*dq[ind]))/np.power(wind[ind], 2)) - zo[ind] = (0.11*visc_air(Ta[ind])/usr[ind]+0.018 * - np.power(usr[ind], 2)/g[ind]) - zot[ind] = 0.40*visc_air(Ta[ind])/usr[ind] - zol[ind] = (Rb[ind]*((np.log((hh_in[0]+zo[ind])/zo[ind]) - - psim_calc((hh_in[0]+zo[ind])/monob[ind], meth) + - psim_calc(zo[ind]/monob[ind], meth)) / - (np.log((hh_in[0]+zo[ind])/zot[ind]) - - psit_calc((hh_in[0]+zo[ind])/monob[ind], meth) + - psit_calc(zot[ind]/monob[ind], meth)))) - monob[ind] = hh_in[0]/zol[ind] - else: - tsrv[ind] = tsr[ind]+0.61*t10n[ind]*qsr[ind] - monob[ind] = (tv10n[ind]*usr[ind]**2)/(g[ind]*kappa*tsrv[ind]) - psim[ind] = psim_calc(hh_in[0]/monob[ind], meth) - psit[ind] = psit_calc(hh_in[1]/monob[ind], meth) - psiq[ind] = psit_calc(hh_in[2]/monob[ind], meth) - if (meth == "UA"): - wind[ind] = np.where(dtv[ind] >= 0, np.where(spd[ind] > 0.1, - spd[ind], 0.1), - np.sqrt(np.power(np.copy(spd[ind]), 2) + - np.power(get_gust(1,tv[ind], usr[ind], - tsrv[ind], zi, lat[ind]), 2))) - # Zeng et al. 1998 (20) - u10n[ind] = (wind[ind]-(usr[ind]/kappa)*(np.log(hh_in[0]/10) - - psim[ind])) - u10n[u10n < 0] = np.nan - elif (meth == "C30" or meth == "C35" or meth == "C40"): - wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) + - np.power(get_gust(1.2, Ta[ind], usr[ind], - tsrv[ind], zi, lat[ind]), 2)) - u10n[ind] = ((wind[ind] + usr[ind]/kappa*(np.log(10/hh_in[0])- - psiu_26(10/monob[ind], meth) + - psiu_26(hh_in[0]/monob[ind], meth)) + - psiu_26(10/monob[ind], meth)*usr[ind]/kappa / - (wind[ind]/spd[ind]))) - u10n[u10n < 0] = np.nan - elif (meth == "ERA5"): - wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) + - np.power(get_gust(1, Ta[ind], usr[ind], - tsrv[ind], zi, lat[ind]), 2)) - u10n[ind] = (spd[ind]+(usr[ind]/kappa)*(np.log(hh_in[0] / - ref_ht)-psim[ind])) - u10n[u10n < 0] = np.nan - else: - u10n[ind] = (wind[ind]-(usr[ind]/kappa)*(np.log(hh_in[0]/10) - - psim[ind])) - u10n[u10n < 0] = np.nan - new = np.array([np.copy(u10n[ind]), np.copy(t10n[ind]), - np.copy(q10n[ind]), np.copy(usr[ind]), - np.copy(tsr[ind]), np.copy(qsr[ind])]) - d = np.abs(new-old) - ind = np.where((d[0, :] > tol[0])+(d[1, :] > tol[1]) + - (d[2, :] > tol[2])+(d[3, :] > tol[3]) + - (d[4, :] > tol[4])+(d[5, :] > tol[5])) - itera[ind] = np.ones(1)*it - if np.shape(ind)[0] == 0: - break - else: - ii = ((d[0, ind] > tol[0])+(d[1, ind] > tol[1]) + - (d[2, ind] > tol[2])+(d[3, ind] > tol[3]) + - (d[4, ind] > tol[4])+(d[5, ind] > tol[5])) - logging.info('method %s | # of iterations:%s', meth, np.ma.median(it)) - logging.info('method %s | # of points that did not converge :%s', meth, - np.shape(ind)) - # calculate output parameters -# rho = (0.34838*P)/(tv10n) - rho = P*100./(287.1*(T+CtoK)*(1+0.61*qair)) # C35 - t10n = t10n-(273.16+tlapse*ref_ht) - sensible = -1*tsr*usr*cp*rho - latent = -1*qsr*usr*lv*rho - if (meth == "C30" or meth == "C35" or meth == "C40" or meth == "UA" or - meth == "ERA5"): - tau = rho*np.power(usr, 2)*(spd/wind) - else: - tau = rho*np.power(usr, 2) - zo = ref_ht/np.exp(kappa/cdn**0.5) - zot = ref_ht/(np.exp(kappa**2/(ctn*np.log(ref_ht/zo)))) - zoq = ref_ht/(np.exp(kappa**2/(cqn*np.log(ref_ht/zo)))) - urefs = (spd-(usr/kappa)*(np.log(hh_in[0]/hh_out[0])-psim + - psim_calc(hh_out[0]/monob, meth))) - trefs = (Ta-(tsr/kappa)*(np.log(hh_in[1]/hh_out[1])-psit + - psit_calc(hh_out[0]/monob, meth))) - trefs = trefs-(273.16+tlapse*hh_out[1]) - qrefs = (qair-(qsr/kappa)*(np.log(hh_in[2]/hh_out[2]) - - psit+psit_calc(hh_out[2]/monob, meth))) - res = np.zeros((27, len(spd))) - res[0][:] = tau - res[1][:] = sensible - res[2][:] = latent - res[3][:] = monob - res[4][:] = cd - res[5][:] = cdn - res[6][:] = ct - res[7][:] = ctn - res[8][:] = cq - res[9][:] = cqn - res[10][:] = tsrv - res[11][:] = tsr - res[12][:] = qsr - res[13][:] = usr - res[14][:] = psim - res[15][:] = psit - res[16][:] = u10n - res[17][:] = t10n - res[18][:] = tv10n - res[19][:] = q10n - res[20][:] = zo - res[21][:] = zot - res[22][:] = zoq - res[23][:] = urefs - res[24][:] = trefs - res[25][:] = qrefs - res[26][:] = itera - return res, ind