import numpy as np CtoK = 273.16 # 273.15 """ Conversion factor for (^\circ\,C) to (^\\circ\\,K) """ kappa = 0.4 # NOTE: 0.41 """ von Karman's constant """ # --------------------------------------------------------------------- def cdn_calc(u10n, Ta, Tp, lat, meth="S80"): """ Calculates neutral drag coefficient Parameters ---------- u10n : float neutral 10m wind speed (m/s) Ta : float air temperature (K) Tp : float wave period meth : str Returns ------- cdn : float """ if (meth == "S80"): cdn = np.where(u10n <= 3, (0.61+0.567/u10n)*0.001, (0.61+0.063*u10n)*0.001) elif (meth == "LP82"): cdn = np.where((u10n < 11) & (u10n >= 4), 1.2*0.001, np.where((u10n <= 25) & (u10n >= 11), (0.49+0.065*u10n)*0.001, 1.14*0.001)) elif (meth == "S88" or meth == "UA" or meth == "ERA5" or meth == "C30" or meth == "C35" or meth == "C40"): cdn = cdn_from_roughness(u10n, Ta, None, lat, meth) elif (meth == "YT96"): # for u<3 same as S80 cdn = np.where((u10n < 6) & (u10n >= 3), (0.29+3.1/u10n+7.7/u10n**2)*0.001, np.where((u10n <= 26) & (u10n >= 6), (0.60 + 0.070*u10n)*0.001, (0.61+0.567/u10n)*0.001)) elif (meth == "LY04"): cdn = np.where(u10n >= 0.5, (0.142+(2.7/u10n)+(u10n/13.09))*0.001, np.nan) else: print("unknown method cdn: "+meth) return cdn # --------------------------------------------------------------------- def cdn_from_roughness(u10n, Ta, Tp, lat, meth="S88"): """ Calculates neutral drag coefficient from roughness length Parameters ---------- u10n : float neutral 10m wind speed (m/s) Ta : float air temperature (K) Tp : float wave period meth : str Returns ------- cdn : float """ g, tol = gc(lat, None), 0.000001 cdn, usr = np.zeros(Ta.shape), np.zeros(Ta.shape) cdnn = (0.61+0.063*u10n)*0.001 zo, zc, zs = np.zeros(Ta.shape), np.zeros(Ta.shape), np.zeros(Ta.shape) for it in range(5): cdn = np.copy(cdnn) usr = np.sqrt(cdn*u10n**2) if (meth == "S88"): # Charnock roughness length (eq. 4 in Smith 88) zc = 0.011*np.power(usr, 2)/g # smooth surface roughness length (eq. 6 in Smith 88) zs = 0.11*visc_air(Ta)/usr zo = zc + zs # eq. 7 & 8 in Smith 88 elif (meth == "UA"): # valid for 0 10, 0.011+(u10n-10)/(18-10)*(0.018-0.011), np.where(u10n > 18, 0.018, a)) zo = a*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr elif (meth == "C35"): a = 0.011*np.ones(Ta.shape) # a = np.where(u10n > 19, 0.0017*19-0.0050, # np.where((u10n > 7) & (u10n <= 18), # 0.0017*u10n-0.0050, a)) a = np.where(u10n > 19, 0.0017*19-0.0050, 0.0017*u10n-0.0050) zo = 0.11*visc_air(Ta)/usr+a*np.power(usr, 2)/g elif (meth == "C40"): a = 0.011*np.ones(Ta.shape) a = np.where(u10n > 22, 0.0016*22-0.0035, 0.0016*u10n-0.0035) zo = a*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr # surface roughness elif (meth == "ERA5"): # eq. (3.26) p.40 over sea IFS Documentation cy46r1 zo = 0.11*visc_air(Ta)/usr+0.018*np.power(usr, 2)/g else: print("unknown method for cdn_from_roughness "+meth) cdnn = (kappa/np.log(10/zo))**2 cdn = np.where(np.abs(cdnn-cdn) < tol, cdnn, np.nan) return cdnn # --------------------------------------------------------------------- def ctcqn_calc(zol, cdn, u10n, zo, Ta, meth="S80"): """ Calculates neutral heat and moisture exchange coefficients Parameters ---------- zol : float height over MO length cdn : float neatral drag coefficient u10n : float neutral 10m wind speed (m/s) zo : float surface roughness (m) Ta : float air temperature (K) meth : str Returns ------- ctn : float neutral heat exchange coefficient cqn : float neutral moisture exchange coefficient """ if (meth == "S80" or meth == "S88" or meth == "YT96"): cqn = np.ones(Ta.shape)*1.20*0.001 # from S88 ctn = np.ones(Ta.shape)*1.00*0.001 elif (meth == "LP82"): cqn = np.where((zol <= 0) & (u10n > 4) & (u10n < 14), 1.15*0.001, 1*0.001) ctn = np.where((zol <= 0) & (u10n > 4) & (u10n < 25), 1.13*0.001, 0.66*0.001) elif (meth == "LY04"): cqn = 34.6*0.001*np.sqrt(cdn) ctn = np.where(zol <= 0, 32.7*0.001*np.sqrt(cdn), 18*0.001*np.sqrt(cdn)) elif (meth == "UA"): usr = np.sqrt(cdn*np.power(u10n, 2)) # Zeng et al. 1998 (25) re=usr*zo/visc_air(Ta) zoq = zo/np.exp(2.67*np.power(re, 1/4)-2.57) zot = zoq cqn = np.where((u10n > 0.5) & (u10n < 18), np.power(kappa, 2) / (np.log(10/zo)*np.log(10/zoq)), np.nan) ctn = np.where((u10n > 0.5) & (u10n < 18), np.power(kappa, 2) / (np.log(10/zo)*np.log(10/zoq)), np.nan) elif (meth == "C30"): usr = np.sqrt(cdn*np.power(u10n, 2)) rr = zo*usr/visc_air(Ta) zoq = np.where(5e-5/np.power(rr, 0.6) > 1.15e-4, 1.15e-4, 5e-5/np.power(rr, 0.6)) # moisture roughness zot=zoq # temperature roughness cqn = kappa**2/np.log(10/zo)/np.log(10/zoq) ctn = kappa**2/np.log(10/zo)/np.log(10/zot) elif (meth == "C35"): usr = np.sqrt(cdn*np.power(u10n, 2)) rr = zo*usr/visc_air(Ta) zoq = np.where(5.8e-5/np.power(rr, 0.72) > 1.6e-4, 1.6e-4, 5.8e-5/np.power(rr, 0.72)) # moisture roughness zot=zoq # temperature roughness cqn = kappa**2/np.log(10/zo)/np.log(10/zoq) ctn = kappa**2/np.log(10/zo)/np.log(10/zot) elif (meth == "C40"): usr = np.sqrt(cdn*np.power(u10n, 2)) rr = zo*usr/visc_air(Ta) zot = np.where(1.0e-4/np.power(rr, 0.55) > 2.4e-4/np.power(rr, 1.2), 2.4e-4/np.power(rr, 1.2), 1.0e-4/np.power(rr, 0.55)) # temperature roughness zoq = np.where(2.0e-5/np.power(rr,0.22) > 1.1e-4/np.power(rr,0.9), 1.1e-4/np.power(rr,0.9), 2.0e-5/np.power(rr,0.22)) # moisture roughness determined by the CLIMODE, GASEX and CBLAST data # zoq = np.where(5e-5/np.power(rr, 0.6) > 1.15e-4, 1.15e-4, # 5e-5/np.power(rr, 0.6)) # moisture roughness as in C30 cqn = kappa**2/np.log(10/zo)/np.log(10/zoq) ctn = kappa**2/np.log(10/zo)/np.log(10/zot) elif (meth == "ERA5"): # eq. (3.26) p.40 over sea IFS Documentation cy46r1 usr = np.sqrt(cdn*np.power(u10n, 2)) zot = 0.40*visc_air(Ta)/usr zoq = 0.62*visc_air(Ta)/usr cqn = kappa**2/np.log(10/zo)/np.log(10/zoq) ctn = kappa**2/np.log(10/zo)/np.log(10/zot) else: print("unknown method ctcqn: "+meth) return ctn, cqn # --------------------------------------------------------------------- def cd_calc(cdn, height, ref_ht, psim): """ Calculates drag coefficient at reference height Parameters ---------- cdn : float neutral drag coefficient height : float original sensor height (m) ref_ht : float reference height (m) psim : float momentum stability function Returns ------- cd : float """ cd = (cdn*np.power(1+np.sqrt(cdn)*np.power(kappa, -1) * (np.log(height/ref_ht)-psim), -2)) return cd # --------------------------------------------------------------------- def ctcq_calc(cdn, cd, ctn, cqn, h_t, h_q, ref_ht, psit, psiq): """ Calculates heat and moisture exchange coefficients at reference height Parameters ---------- cdn : float neutral drag coefficient cd : float drag coefficient at reference height ctn : float neutral heat exchange coefficient cqn : float neutral moisture exchange coefficient h_t : float original temperature sensor height (m) h_q : float original moisture sensor height (m) ref_ht : float reference height (m) psit : float heat stability function psiq : float moisture stability function Returns ------- ct : float cq : float """ ct = ctn*(cd/cdn)**0.5/(1+ctn*((np.log(h_t/ref_ht)-psit)/(kappa*cdn**0.5))) cq = cqn*(cd/cdn)**0.5/(1+cqn*((np.log(h_q/ref_ht)-psiq)/(kappa*cdn**0.5))) return ct, cq # --------------------------------------------------------------------- def psim_calc(zol, meth="S80"): """ Calculates momentum stability function Parameters ---------- zol : float height over MO length meth : str Returns ------- psim : float """ coeffs = get_stabco(meth) alpha, beta, gamma = coeffs[0], coeffs[1], coeffs[2] if (meth == "ERA5"): psim = np.where(zol < 0, psim_conv(zol, alpha, beta, gamma), psim_stab_era5(zol, alpha, beta, gamma)) elif (meth == "C30" or meth == "C35" or meth == "C40"): psim = psiu_26(zol, meth) else: psim = np.where(zol < 0, psim_conv(zol, alpha, beta, gamma), psim_stab(zol, alpha, beta, gamma)) return psim # --------------------------------------------------------------------- def psit_calc(zol, meth="S80"): """ Calculates heat stability function Parameters ---------- zol : float height over MO length meth : str Returns ------- psit : float """ coeffs = get_stabco(meth) alpha, beta, gamma = coeffs[0], coeffs[1], coeffs[2] if (meth == "ERA5"): psit = np.where(zol < 0, psi_conv(zol, alpha, beta, gamma), psi_stab_era5(zol, alpha, beta, gamma)) elif (meth == "C30" or meth == "C35" or meth == "C40"): psit = psit_26(zol) else: psit = np.where(zol < 0, psi_conv(zol, alpha, beta, gamma), psi_stab(zol, alpha, beta, gamma)) return psit # --------------------------------------------------------------------- def get_stabco(meth="S80"): """ Gives the coefficients \\alpha, \\beta, \\gamma for stability functions Parameters ---------- meth : str Returns ------- coeffs : float """ if (meth == "S80" or meth == "S88" or meth == "LY04" or meth == "UA" or meth == "ERA5" or meth == "C30" or meth == "C35" or meth == "C40"): alpha, beta, gamma = 16, 0.25, 5 # Smith 1980, from Dyer (1974) elif (meth == "LP82"): alpha, beta, gamma = 16, 0.25, 7 elif (meth == "YT96"): alpha, beta, gamma = 20, 0.25, 5 else: print("unknown method stabco: "+meth) coeffs = np.zeros(3) coeffs[0] = alpha coeffs[1] = beta coeffs[2] = gamma return coeffs # --------------------------------------------------------------------- def psi_stab_era5(zol, alpha, beta, gamma): """ Calculates heat stability function for stable conditions for method ERA5 Parameters ---------- zol : float height over MO length alpha, beta, gamma : float constants given by get_stabco Returns ------- psit : float """ # eq (3.22) p. 39 IFS Documentation cy46r1 a, b, c, d = 1, 2/3, 5, 0.35 psit = -b*(zol-c/d)*np.exp(-d*zol)-np.power(1+(2/3)*a*zol, 1.5)-(b*c)/d+1 return psit # --------------------------------------------------------------------- def psit_26(zol): """ Computes temperature structure function as in C35 Parameters ---------- zol : float height over MO length Returns ------- psi : float """ b, d = 2/3, 0.35 dzol = np.where(d*zol > 50, 50, d*zol) # stable psi = -((1+b*zol)**1.5+b*(zol-14.28)*np.exp(-dzol)+8.525) psik = 2*np.log((1+np.sqrt(1-15*zol))/2) psic = (1.5*np.log((1+np.power(1-34.15*zol, 1/3) + np.power(1-34.15*zol, 2/3))/3)-np.sqrt(3) * np.arctan(1+2*np.power(1-34.15*zol, 1/3))/np.sqrt(3) + 4*np.arctan(1)/np.sqrt(3)) f = np.power(zol, 2)/(1+np.power(zol, 2)) psi = np.where(zol < 0, (1-f)*psik+f*psic, psi) return psi # --------------------------------------------------------------------- def psi_conv(zol, alpha, beta, gamma): """ Calculates heat stability function for unstable conditions Parameters ---------- zol : float height over MO length alpha, beta, gamma : float constants given by get_stabco Returns ------- psit : float """ xtmp = (1-alpha*zol)**beta psit = 2*np.log((1+xtmp**2)*0.5) return psit # --------------------------------------------------------------------- def psi_stab(zol, alpha, beta, gamma): """ Calculates heat stability function for stable conditions Parameters ---------- zol : float height over MO length alpha, beta, gamma : float constants given by get_stabco Returns ------- psit : float """ psit = -gamma*zol return psit # --------------------------------------------------------------------- def psim_stab_era5(zol, alpha, beta, gamma): """ Calculates momentum stability function for stable conditions for method ERA5 Parameters ---------- zol : float height over MO length alpha, beta, gamma : float constants given by get_stabco Returns ------- psim : float """ # eq (3.22) p. 39 IFS Documentation cy46r1 a, b, c, d = 1, 2/3, 5, 0.35 psim = -b*(zol-c/d)*np.exp(-d*zol)-a*zol-(b*c)/d return psim # --------------------------------------------------------------------- def psim_conv(zol, alpha, beta, gamma): """ Calculates momentum stability function for unstable conditions Parameters ---------- zol : float height over MO length alpha, beta, gamma : float constants given by get_stabco Returns ------- psim : float """ xtmp = (1-alpha*zol)**beta psim = (2*np.log((1+xtmp)*0.5)+np.log((1+xtmp**2)*0.5) - 2*np.arctan(xtmp)+np.pi/2) return psim # --------------------------------------------------------------------- def psim_stab(zol, alpha, beta, gamma): """ Calculates momentum stability function for stable conditions Parameters ---------- zol : float height over MO length alpha, beta, gamma : float constants given by get_stabco Returns ------- psim : float """ psim = -gamma*zol return psim # --------------------------------------------------------------------- def psiu_26(zol, meth): """ Computes velocity structure function C35 Parameters ---------- zol : float height over MO length Returns ------- psi : float """ if (meth == "C30"): dzol = np.where(0.35*zol > 50, 50, 0.35*zol) # stable psi = -((1+zol)+0.6667*(zol-14.28)*np.exp(-dzol)+8.525) k = np.where(zol < 0) # unstable x = np.power(1-15*zol[k], 0.25) psik = (2*np.log((1+x)/2)+np.log((1+np.power(x, 2))/2)-2*np.arctan(x) + 2*np.arctan(1)) x = np.power(1-10.15*zol[k], 0.3333) psic = (1.5*np.log((1+x+np.power(x, 2))/3)-np.sqrt(3) * np.arctan((1+2*x)/np.sqrt(3))+4*np.arctan(1)/np.sqrt(3)) f = np.power(zol[k], 2)/(1+np.power(zol[k], 2)) psi[k] = (1-f)*psik+f*psic elif (meth == "C35" or meth == "C40"): dzol = np.where(0.35*zol > 50, 50, 0.35*zol) # stable a, b, c, d = 0.7, 3/4, 5, 0.35 psi = -(a*zol+b*(zol-c/d)*np.exp(-dzol)+b*c/d) k = np.where(zol < 0) # unstable x = np.power(1-15*zol[k], 0.25) psik = 2*np.log((1+x)/2)+np.log((1+x**2)/2)-2*np.arctan(x)+2*np.arctan(1) x = np.power(1-10.15*zol[k], 0.3333) psic = (1.5*np.log((1+x+np.power(x, 2))/3)-np.sqrt(3) * np.arctan((1+2*x)/np.sqrt(3))+4*np.arctan(1)/np.sqrt(3)) f = np.power(zol[k], 2)/(1+np.power(zol[k], 2)) psi[k] = (1-f)*psik+f*psic return psi # ------------------------------------------------------------------------------ def psiu_40(zol): """ Computes velocity structure function C35 Parameters ---------- zol : float height over MO length Returns ------- psi : float """ dzol = np.where(0.35*zol > 50, 50, 0.35*zol) # stable a, b, c, d = 1, 3/4, 5, 0.35 psi = -(a*zol+b*(zol-c/d)*np.exp(-dzol)+b*c/d) k = np.where(zol < 0) # unstable x = (1-18*zol[k])**0.25 psik = 2*np.log((1+x)/2)+np.log((1+x**2)/2)-2*np.arctan(x)+2*np.arctan(1) x = (1-10*zol[k])**0.3333 psic = (1.5*np.log((1+x+x**2)/3)-np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3)) + 4*np.arctan(1)/np.sqrt(3)) f = zol[k]**2/(1+zol[k]**2) psi[k] = (1-f)*psik+f*psic return psi # --------------------------------------------------------------------- def get_skin(sst, qsea, rho, Rl, Rs, Rnl, cp, lv, tkt, usr, tsr, qsr, lat): """ Computes cool skin Parameters ---------- sst : float sea surface temperature ($^\circ$\,C) qsea : float specific humidity over sea (g/kg) rho : float density of air (kg/m^3) Rl : float downward longwave radiation (W/m^2) Rs : float downward shortwave radiation (W/m^2) Rnl : float upwelling IR radiation (W/m^2) cp : float specific heat of air at constant pressure lv : float latent heat of vaporization tkt : float cool skin thickness usr : float friction velocity tsr : float star temperature qsr : float star humidity lat : float latitude Returns ------- dter : float dqer : float """ # coded following Saunders (1967) with lambda = 6 g = gc(lat, None) if (np.nanmin(sst) > 200): # if Ta in Kelvin convert to Celsius sst = sst-273.16 # ************ cool skin constants ******* # density of water, specific heat capacity of water, water viscosity, # thermal conductivity of water rhow, cpw, visw, tcw = 1022, 4000, 1e-6, 0.6 Al = 2.1e-5*np.power(sst+3.2, 0.79) be = 0.026 bigc = 16*g*cpw*np.power(rhow*visw, 3)/(np.power(tcw, 2)*np.power(rho, 2)) wetc = 0.622*lv*qsea/(287.1*np.power(sst+273.16, 2)) Rns = 0.945*Rs # albedo correction hsb = -rho*cp*usr*tsr hlb = -rho*lv*usr*qsr qout = Rnl+hsb+hlb dels = Rns*(0.065+11*tkt-6.6e-5/tkt*(1-np.exp(-tkt/8.0e-4))) qcol = qout-dels alq = Al*qcol+be*hlb*cpw/lv xlamx = 6*np.ones(sst.shape) xlamx = np.where(alq > 0, 6/(1+(bigc*alq/usr**4)**0.75)**0.333, 6) tkt = np.where(alq > 0, xlamx*visw/(np.sqrt(rho/rhow)*usr), np.where(xlamx*visw/(np.sqrt(rho/rhow)*usr) > 0.01, 0.01, xlamx*visw/(np.sqrt(rho/rhow)*usr))) dter = qcol*tkt/tcw dqer = wetc*dter return dter, dqer, tkt # --------------------------------------------------------------------- def get_gust(beta, Ta, usr, tsrv, zi, lat): """ Computes gustiness Parameters ---------- beta : float constant Ta : float air temperature (K) usr : float friction velocity (m/s) tsrv : float star virtual temperature of air (K) zi : int scale height of the boundary layer depth (m) lat : float latitude Returns ------- ug : float """ if (np.nanmax(Ta) < 200): # convert to K if in Celsius Ta = Ta+273.16 g = gc(lat, None) Bf = (-g/Ta)*usr*tsrv ug = np.ones(np.shape(Ta))*0.2 ug = np.where(Bf > 0, beta*np.power(Bf*zi, 1/3), 0.2) return ug # --------------------------------------------------------------------- def get_heights(h): """ Reads input heights for velocity, temperature and humidity Parameters ---------- h : float input heights (m) Returns ------- hh : array """ hh = np.zeros(3) if (type(h) == float or type(h) == int): hh[0], hh[1], hh[2] = h, h, h elif len(h) == 2: hh[0], hh[1], hh[2] = h[0], h[1], h[1] else: hh[0], hh[1], hh[2] = h[0], h[1], h[2] return hh # --------------------------------------------------------------------- def svp_calc(T): """ Calculates saturation vapour pressure Parameters ---------- T : float temperature (K) Returns ------- svp : float in mb, pure water """ if (np.nanmin(T) < 200): # if T in Celsius convert to Kelvin T = T+273.16 svp = np.where(np.isnan(T), np.nan, 2.1718e08*np.exp(-4157/(T-33.91-0.16))) return svp # --------------------------------------------------------------------- def qsea_calc(sst, pres): """ Computes specific humidity of the sea surface air Parameters ---------- sst : float sea surface temperature (K) pres : float pressure (mb) Returns ------- qsea : float (kg/kg) """ if (np.nanmin(sst) < 200): # if sst in Celsius convert to Kelvin sst = sst+273.16 ed = svp_calc(sst) e = 0.98*ed qsea = (0.622*e)/(pres-0.378*e) qsea = np.where(~np.isnan(sst+pres), qsea, np.nan) return qsea # --------------------------------------------------------------------- def q_calc(Ta, rh, pres): """ Computes specific humidity following Haltiner and Martin p.24 Parameters ---------- Ta : float air temperature (K) rh : float relative humidity (%) pres : float air pressure (mb) Returns ------- qair : float, (kg/kg) """ if (np.nanmin(Ta) < 200): # if sst in Celsius convert to Kelvin Ta = Ta+273.15 e = np.where(np.isnan(Ta+rh+pres), np.nan, svp_calc(Ta)*rh*0.01) qair = np.where(np.isnan(e), np.nan, ((0.62197*e)/(pres-0.378*e))) return qair # ------------------------------------------------------------------------------ def bucksat(T, P): """ Computes saturation vapor pressure (mb) as in C35 Parameters ---------- T : float temperature ($^\\circ$\\,C) P : float pressure (mb) Returns ------- exx : float """ T = np.asarray(T) if (np.nanmin(T) > 200): # if Ta in Kelvin convert to Celsius T = T-CtoK exx = 6.1121*np.exp(17.502*T/(T+240.97))*(1.0007+3.46e-6*P) return exx # ------------------------------------------------------------------------------ def qsat26sea(T, P): """ Computes surface saturation specific humidity (g/kg) as in C35 Parameters ---------- T : float temperature ($^\\circ$\\,C) P : float pressure (mb) Returns ------- qs : float """ T = np.asarray(T) if (np.nanmin(T) > 200): # if Ta in Kelvin convert to Celsius T = T-CtoK ex = bucksat(T, P) es = 0.98*ex # reduction at sea surface qs = 622*es/(P-0.378*es) return qs # ------------------------------------------------------------------------------ def qsat26air(T, P, rh): """ Computes saturation specific humidity (g/kg) as in C35 Parameters ---------- T : float temperature ($^\circ$\,C) P : float pressure (mb) Returns ------- q : float em : float """ T = np.asarray(T) if (np.nanmin(T) > 200): # if Ta in Kelvin convert to Celsius T = T-CtoK es = bucksat(T, P) em = 0.01*rh*es q = 622*em/(P-0.378*em) return q, em # --------------------------------------------------------------------- def gc(lat, lon=None): """ Computes gravity relative to latitude Parameters ---------- lat : float latitude ($^\circ$) lon : float longitude ($^\circ$, optional) Returns ------- gc : float gravity constant (m/s^2) """ gamma = 9.7803267715 c1 = 0.0052790414 c2 = 0.0000232718 c3 = 0.0000001262 c4 = 0.0000000007 if lon is not None: lon_m, lat_m = np.meshgrid(lon, lat) else: lat_m = lat phi = lat_m*np.pi/180. xx = np.sin(phi) gc = (gamma*(1+c1*np.power(xx, 2)+c2*np.power(xx, 4)+c3*np.power(xx, 6) + c4*np.power(xx, 8))) return gc # --------------------------------------------------------------------- def visc_air(T): """ Computes the kinematic viscosity of dry air as a function of air temp. following Andreas (1989), CRREL Report 89-11. Parameters ---------- Ta : float air temperature ($^\circ$\,C) Returns ------- visa : float kinematic viscosity (m^2/s) """ T = np.asarray(T) if (np.nanmin(T) > 200): # if Ta in Kelvin convert to Celsius T = T-273.16 visa = 1.326e-5*(1+6.542e-3*T+8.301e-6*np.power(T, 2) - 4.84e-9*np.power(T, 3)) return visa