import numpy as np import math """ Conversion factor for [:math:`^\\circ` C] to [:math:`^\\circ` K] """ CtoK = 273.16 # 273.15 """ von Karman's constant """ kappa = 0.4 # NOTE: 0.41 def charnock_C35(wind,u10n,usr,seastate,waveage,wcp,sigH,lat): g=gc(lat,None) a1, a2=0.0017, -0.0050 charnC=np.where(u10n>19,a1*19+a2,a1*u10n+a2) A, B=0.114, 0.622 #wave-age dependent coefficients Ad, Bd=0.091, 2.0 #Sea-state/wave-age dependent coefficients charnW=A*(usr/wcp)**B zoS=sigH*Ad*(usr/wcp)**Bd charnS=(zoS*g)/usr**2 charn=np.where(wind>10,0.011+(wind-10)/(18-10)*(0.018-0.011),np.where(wind>18,0.018,0.011*np.ones(np.shape(wind)))) if waveage: if seastate: charn=charnS else: charn=charnW else: charn=charnC ac = np.zeros((len(wind),3)) ac[:,0] = charn ac[:,1] = charnS ac[:,2] = charnW return ac def cd_C35(u10n,wind,usr,charn,monob,Ta,hh_in,lat): g=gc(lat,None) zo=charn*usr**2/g+0.11*visc_air(Ta)/usr # surface roughness rr=zo*usr/visc_air(Ta) zoq=np.where(5.8e-5/rr**0.72>1.6e-4,1.6e-4,5.8e-5/rr**0.72) # These thermal roughness lengths give Stanton and zot=zoq # Dalton numbers that closely approximate COARE 3.0 cdhf=kappa/(np.log(hh_in[0]/zo)-psiu_26(hh_in[0]/monob)) cthf=kappa/(np.log(hh_in[1]/zot)-psit_26(hh_in[1]/monob)) cqhf=kappa/(np.log(hh_in[2]/zoq)-psit_26(hh_in[2]/monob)) return zo,cdhf, cthf, cqhf def cdn_calc(u10n,Ta,Tp,method="Smith80"): if (method == "Smith80"): cdn = np.where(u10n <=3,(0.61+0.567/u10n)*0.001,(0.61+0.063*u10n)*0.001) elif (method == "LP82"): cdn = np.where((u10n < 11) & (u10n>=4),1.2*0.001,np.where((u10n<=25) & (u10n>=11),(0.49+0.065*u10n)*0.001,1.14*0.001)) elif (method == "Smith88" or method == "COARE3.0" or method == "COARE4.0"): cdn = cdn_from_roughness(u10n,Ta,None, method) elif (method == "HEXOS"): cdn = (0.5+0.091*u10n)*0.001 #Smith et al. 1991 #(0.27 + 0.116*u10n)*0.001 Smith et al. 1992 elif (method == "HEXOSwave"): cdn=cdn_from_roughness(u10n,Ta,Tp, method) elif (method == "YT96"): cdn = np.where((u10n<6) & (u10n>=3),(0.29 + 3.1/u10n + 7.7/u10n**2)*0.001,np.where((u10n<=26) & (u10n>=6),(0.60 + 0.070*u10n)*0.001,(0.61+0.567/u10n)*0.001)) # for u<3 same as Smith80 elif (method == "LY04"): cdn = np.where(u10n>=0.5,(0.142 + (2.7/u10n) + (u10n/13.09))*0.001,np.nan) else: print("unknown method cdn: "+method) return cdn #--------------------------------------------------------------------- def cdn_from_roughness(u10n,Ta,Tp,method="Smith88"): g,tol = 9.812, 0.000001 cdn,ustar = np.zeros(np.asarray(u10n).shape),np.zeros(np.asarray(u10n).shape) cdnn = (0.61 + 0.063 * u10n) * 0.001 zo,zc,zs=np.zeros(np.asarray(u10n).shape),np.zeros(np.asarray(u10n).shape),np.zeros(np.asarray(u10n).shape) for it in range(5): cdn = np.copy(cdnn) ustar = np.sqrt(cdn*u10n**2) if (method == "Smith88"): zc = 0.011*ustar**2/g #.....Charnock roughness length (equn 4 in Smith 88) zs = 0.11*visc_air(Ta)/ustar #.....smooth surface roughness length (equn 6 in Smith 88) zo = zc + zs #.....equns 7 & 8 in Smith 88 to calculate new CDN elif (method == "COARE3.0"): zc = 0.011 + (u10n-10)/(18-10)*(0.018-0.011) zc=np.where(u10n<10,0.011,np.where(u10n>18,0.018,zc)) zs = 0.11 * visc_air(Ta)/ ustar zo = zc*ustar*ustar/g + zs elif (method == "HEXOSwave"): if (np.all(Tp==None) or np.nansum(Tp)==0): Tp = 0.729*u10n # Taylor and Yelland 2001 cp_wave = g*Tp/2/np.pi # use input wave period zo = 0.48*ustar**3/g/cp_wave # Smith et al. 1992 else: print("unknown method for cdn_from_roughness "+method) cdnn = (kappa/np.log(10/zo))**2 cdn=np.where(np.abs(cdnn-cdn) < tol, cdnn,np.nan) return cdnn #--------------------------------------------------------------------- def ctcqn_calc(zol, cdn, u10n, zo,Ta, method="Smith80"): l = np.shape(u10n) if (method == "Smith80" or method == "Smith88" or method == "YT96"): cqn = np.ones(l)*1.20*0.001 # from Smith88, no value given by S80 or YT80 ctn = np.ones(l)*1.00*0.001 elif (method == "LP82"): cqn = np.where((zol <= 0) & (u10n>4) & (u10n<14),1.15*0.001,np.nan) ctn = np.where((zol <= 0) & (u10n>4) & (u10n<25), 1.13*0.001, 0.66*0.001) elif (method == "HEXOS" or method == "HEXOSwave"): cqn = np.where((u10n<=23) & (u10n>=3),1.1*0.001,np.nan) ctn = np.where((u10n<=18) & (u10n>=3),1.1*0.001,np.nan) elif (method == "COARE3.0" or method == "COARE4.0"): ustar = (cdn * u10n**2)**0.5 rr = zo*ustar/visc_air(Ta) zoq = 5.5e-5/rr**0.6 zoq[zoq>1.15e-4] = 1.15e-4 zot = zoq cqn = kappa**2/np.log(10/zo)/np.log(10/zoq) ctn = kappa**2/np.log(10/zo)/np.log(10/zot) elif (method == "LY04"): cqn = 34.6*0.001*cdn**0.5 ctn = np.where(zol <= 0, 32.7*0.001*cdn**0.5, 18*0.001*cdn**0.5) else: print("unknown method ctcqn: "+method) return ctn, cqn #--------------------------------------------------------------------- def cd_calc(cdn, height, ref_ht, psim): cd = cdn*np.power(1+np.sqrt(cdn)*np.power(kappa,-1)*(np.log(height/ref_ht)-psim),-2) return cd #--------------------------------------------------------------------- def ctcq_calc(cdn, cd, ctn, cqn, h_t, h_q, ref_ht, psit, psiq): ct = ctn*(cd/cdn)**0.5/(1+ctn*((np.log(h_t/ref_ht)-psit)/(kappa*cdn**0.5))) cq = cqn*(cd/cdn)**0.5/(1+cqn*((np.log(h_q/ref_ht)-psiq)/(kappa*cdn**0.5))) return ct, cq #--------------------------------------------------------------------- def psim_calc(zol, method="Smith80"): coeffs = get_stabco(method) alpha, beta, gamma = coeffs[0], coeffs[1], coeffs[2] if (method == "COARE3.0" or method == "COARE4.0"): psim = np.where(zol<0,psim_conv_coare3(zol,alpha,beta,gamma),psim_stab_coare3(zol,alpha,beta,gamma)) else: psim = np.where(zol<0,psim_conv(zol,alpha,beta,gamma),psim_stab(zol,alpha,beta,gamma)) return psim #--------------------------------------------------------------------- def psit_calc(zol, method="Smith80"): coeffs = get_stabco(method) alpha, beta, gamma = coeffs[0], coeffs[1], coeffs[2] if (method == "COARE3.0" or method == "COARE4.0"): psit = np.where(zol<0,psi_conv_coare3(zol,alpha,beta,gamma),psi_stab_coare3(zol,alpha,beta,gamma)) else: psit = np.where(zol<0,psi_conv(zol,alpha,beta,gamma),psi_stab(zol,alpha,beta,gamma)) return psit #--------------------------------------------------------------------- def get_stabco(method="Smith80"): if (method == "Smith80" or method == "Smith88" or method == "LY04"): # Smith 1980, from Dyer (1974) alpha, beta, gamma = 16, 0.25, 5 elif (method == "LP82"): alpha, beta, gamma = 16, 0.25, 7 elif (method == "HEXOS" or method == "HEXOSwave"): alpha, beta, gamma = 16, 0.25, 8 elif (method == "YT96"): alpha, beta, gamma = 20, 0.25, 5 elif (method == "COARE3.0" or method == "COARE4.0"): # use separate subroutine alpha, beta, gamma = 15, 1/3, 5 # not sure about gamma=34.15 #alpha <- NA #beta <- NA else: print("unknown method stabco: "+method) coeffs = np.zeros(3) coeffs[0] = alpha coeffs[1] = beta coeffs[2] = gamma return coeffs #--------------------------------------------------------------------- #====================================================================== def psi_conv_coare3(zol,alpha,beta,gamma): x = (1-alpha*zol)**0.5 # Kansas unstable psik = 2*np.log((1+x)/2.) y = (1-34.15*zol)**beta psic = 1.5*np.log((1+y+y*y)/3.)-(3)**0.5*np.arctan((1+2*y)/ (3)**0.5)+4*np.arctan(1)/(3)**0.5 f = zol*zol/(1.+zol*zol) psit = (1-f)*psik+f*psic return psit #====================================================================== def psi_stab_coare3(zol,alpha,beta,gamma): #Stable c = np.where(0.35*zol > 50, 50, 0.35*zol) #Stable psit = -((1+2*zol/3)**1.5+0.6667*(zol-14.28)/np.exp(c)+8.525) return psit #====================================================================== def psi_conv(zol,alpha,beta,gamma): xtmp = (1 - alpha*zol)**beta psit = 2*np.log((1+xtmp**2)*0.5) return psit #====================================================================== def psi_stab(zol,alpha,beta,gamma): psit = -gamma*zol return psit #====================================================================== def psim_conv_coare3(zol,alpha,beta,gamma): x = (1-15*zol)**0.25 #Kansas unstable psik = 2*np.log((1+x)/2)+np.log((1+x*x)/2)-2*np.arctan(x)+2*np.arctan(1) y = (1-10.15*zol)**0.3333 #Convective psic = 1.5*np.log((1+y+y*y)/3.)-np.sqrt(3)*np.arctan((1+2*y)/np.sqrt(3))+4.*np.arctan(1)/np.sqrt(3) f = zol*zol/(1+zol*zol) psim = (1-f)*psik+f*psic return psim #====================================================================== def psim_stab_coare3(zol,alpha,beta,gamma): c = np.where(0.35*zol > 50, 50, 0.35*zol) #Stable psim = -((1+1*zol)**1.0+0.6667*(zol-14.28)/np.exp(-c)+8.525) return psim #====================================================================== def psim_conv(zol,alpha,beta,gamma): xtmp = (1 - alpha*zol)**beta psim = 2*np.log((1+xtmp)*0.5)+np.log((1+xtmp**2)*0.5)-2*np.arctan(xtmp)+np.pi/2 return psim #====================================================================== def psim_stab(zol,alpha,beta,gamma): psim = -gamma*zol return psim #====================================================================== #--------------------------------------------------------------------- def get_skin(sst,qsea,rho,jcool,Rl,Rs,Rnl,cp,lv,usr,tsr,qsr,lat): # coded following Saunders (1967) with lambda = 6 g=gc(lat,None) if ( np.nanmin(sst) > 200 ): # if Ta in Kelvin convert to Celsius sst = sst-273.16 #************ cool skin constants ******* rhow, cpw, visw, tcw = 1022, 4000, 1e-6, 0.6 # density of water, specific heat capacity of water, water viscosity, thermal conductivity of water Al = 2.1e-5*(sst+3.2)**0.79 be = 0.026 bigc = 16*g*cpw*(rhow*visw)**3/(tcw*tcw*rho*rho) wetc = 0.622*lv*qsea/(287.1*(sst+273.16)**2) Rns = 0.945*Rs # albedo correction hsb=-rho*cp*usr*tsr hlb=-rho*lv*usr*qsr qout=Rnl+hsb+hlb tkt = 0.001*np.ones(np.shape(sst)) dels=Rns*(0.065+11*tkt-6.6e-5/tkt*(1-np.exp(-tkt/8.0e-4))) qcol=qout-dels alq=Al*qcol+be*hlb*cpw/lv xlamx=np.where(alq>0,6/(1+(bigc*alq/usr**4)**0.75)**0.333,6) tkt=xlamx*visw/(np.sqrt(rho/rhow)*usr) #np.nanmin(0.01, xlamx*visw/(np.sqrt(rhoa/rhow)*usr)) tkt=np.where(alq>0,np.where(tkt > 0.01, 0.01,tkt),tkt) dter=qcol*tkt/tcw dqer=wetc*dter return dter, dqer #--------------------------------------------------------------------- def get_gust(Ta,usr,tsrv,zi,lat): if (np.max(Ta)<200): # convert to K if in Celsius Ta=Ta+273.16 if np.isnan(zi): zi = 600 g=gc(lat,None) Bf=-g/Ta*usr*tsrv ug=np.ones(np.shape(Ta))*0.2 ug=np.where(Bf>0,1.2*(Bf*zi)**0.333,0.2) return ug #--------------------------------------------------------------------- def get_heights(h): hh=np.zeros(3) if type(h) == float or type(h) == int: hh[0], hh[1], hh[2] = h, h, h elif len(h)==2: hh[0], hh[1], hh[2] = h[0], h[1], h[1] else: hh[0], hh[1], hh[2] = h[0], h[1], h[2] return hh #--------------------------------------------------------------------- def svp_calc(T): # t is in Kelvin # svp in mb, pure water if ( np.nanmin(T) < 200 ): # if T in Celsius convert to Kelvin T = T+273.16 svp = np.where(np.isnan(T), np.nan,2.1718e08*np.exp(-4157/(T-33.91-0.16))) return svp #--------------------------------------------------------------------- def qsea_calc(sst,pres): # sst in Kelvin # pres in mb # qsea in kg/kg if ( np.nanmin(sst) < 200 ): # if sst in Celsius convert to Kelvin sst = sst+273.16 ed = svp_calc(sst) e = 0.98*ed qsea = (0.622*e)/(pres-0.378*e) qsea = np.where(~np.isnan(sst+pres),qsea,np.nan) return qsea #--------------------------------------------------------------------- def rh_calc(Ta,qair,pres): if ( np.nanmin(Ta) < 200 ): # if sst in Celsius convert to Kelvin Ta = Ta+273.16 e = np.where(np.isnan(Ta+qair+pres),np.nan,(qair*pres)/(0.62197+qair*0.378)) ed = np.where(np.isnan(e),np.nan,svp_calc(Ta)) rh = np.where(np.isnan(ed),np.nan,e/ed*100) return rh #--------------------------------------------------------------------- def q_calc(Ta,rh,pres): # rh in % # air in K, if not it will be converted to K # pres in mb # qair in kg/kg if ( np.nanmin(Ta) < 200 ): # if sst in Celsius convert to Kelvin Ta = Ta+273.15 e = np.where(np.isnan(Ta+rh+pres),np.nan,svp_calc(Ta)*rh*0.01) qair = np.where(np.isnan(e),np.nan,((0.62197*e)/(pres-0.378*e))) # Haltiner and Martin p.24 return qair #--------------------------------------------------------------------- def gc(lat,lon=None): """ computes gravity relative to latitude inputs: lat : latitudes in deg lon : longitudes (optional) output: gc: gravity constant """ gamma = 9.7803267715 c1 = 0.0052790414 c2 = 0.0000232718 c3 = 0.0000001262 c4 = 0.0000000007 if lon is not None: lon_m,lat_m = np.meshgrid(lon,lat) else: lat_m = lat phi = lat_m*np.pi/180. xx = np.sin(phi) gc = gamma*(1+c1*np.power(xx,2)+c2*np.power(xx,4)+c3*np.power(xx,6)+c4*np.power(xx,8)) return gc #--------------------------------------------------------------------- def PtoDepth(p,Lat): """ computes depth in m from pressure in db following Saunders and Fofonoff (1976). Deep sea res. """ x=math.sin(math.radians(Lat)) x=x*x # gravity variation with latitude (Anon, 1970) gr = 9.780318 * (1 + (5.2788E-3 + 2.36E-5 * x) * x) + 1.092E-6 * p d = (((-1.82E-15 * p + 2.279E-10) * p - 2.2512E-5) * p + 9.72659) * p; depth = d/gr return depth #--------------------------------------------------------------------- def visc_air(Ta): """ Computes the kinematic viscosity of dry air as a function of air temperature following Andreas (1989), CRREL Report 89-11. input: Ta : air temperature [Celsius] output visa : kinematic viscosity [m^2/s] """ Ta = np.asarray(Ta) if ( np.nanmin(Ta) > 200 ): # if Ta in Kelvin convert to Celsius Ta = Ta-273.16 visa = 1.326e-5 * (1 + 6.542e-3*Ta + 8.301e-6*Ta**2 - 4.84e-9*Ta**3) return visa ###### # functions from coare35vn.mat ###### #------------------------------------------------------------------------------ def psit_26(zet): """ computes temperature structure function """ dzet= np.where(0.35*zet > 50, 50, 0.35*zet) # stable psi=-((1+0.6667*zet)**1.5+0.6667*(zet-14.28)*np.exp(-dzet)+8.525) k=np.where(zet<0) # unstable x=(1-15*zet[k])**0.5 psik=2*np.log((1+x)/2) x=(1-34.15*zet[k])**0.3333 psic=1.5*np.log((1+x+x**2)/3)-np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3))+4*np.arctan(1)/np.sqrt(3) f=zet[k]**2/(1+zet[k]**2) psi[k]=(1-f)*psik+f*psic return psi #------------------------------------------------------------------------------ def psiu_26(zet): """ computes velocity structure function """ dzet=np.where(0.35*zet > 50, 50, 0.35*zet) # stable a, b, c, d= 0.7, 3/4, 5, 0.35 psi=-(a*zet+b*(zet-c/d)*np.exp(-dzet)+b*c/d) k=np.where(zet<0) # unstable x=(1-15*zet[k])**0.25 psik=2*np.log((1+x)/2)+np.log((1+x**2)/2)-2*np.arctan(x)+2*np.arctan(1) x=(1-10.15*zet[k])**0.3333 psic=1.5*np.log((1+x+x**2)/3)-np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3))+4*np.arctan(1)/np.sqrt(3) f=zet[k]**2/(1+zet[k]**2) psi[k]=(1-f)*psik+f*psic return psi #------------------------------------------------------------------------------ def psiu_40(zet): """ computes velocity structure function """ dzet=np.where(0.35*zet > 50, 50, 0.35*zet) # stable a, b, c, d= 1, 3/4, 5, 0.35 psi=-(a*zet+b*(zet-c/d)*np.exp(-dzet)+b*c/d) k=np.where(zet<0) # unstable x=(1-18*zet[k])**0.25 psik=2*np.log((1+x)/2)+np.log((1+x**2)/2)-2*np.arctan(x)+2*np.arctan(1) x=(1-10*zet[k])**0.3333 psic=1.5*np.log((1+x+x**2)/3)-np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3))+4*np.arctan(1)/np.sqrt(3) f=zet[k]**2/(1+zet[k]**2) psi[k]=(1-f)*psik+f*psic return psi #------------------------------------------------------------------------------ def bucksat(T,P): """ computes saturation vapor pressure [mb] given T [degC] and P [mb] """ T = np.asarray(T) if ( np.nanmin(T) > 200 ): # if Ta in Kelvin convert to Celsius T = T-CtoK exx=6.1121*np.exp(17.502*T/(T+240.97))*(1.0007+3.46e-6*P) return exx #------------------------------------------------------------------------------ def qsat26sea(T,P): """ computes surface saturation specific humidity [g/kg] given T [degC] and P [mb] """ T = np.asarray(T) if ( np.nanmin(T) > 200 ): # if Ta in Kelvin convert to Celsius T = T-CtoK ex=bucksat(T,P) es=0.98*ex # reduction at sea surface qs=622*es/(P-0.378*es) return qs #------------------------------------------------------------------------------ def qsat26air(T,P,rh): """ computes saturation specific humidity [g/kg] given T [degC] and P [mb] """ T = np.asarray(T) if ( np.nanmin(T) > 200 ): # if Ta in Kelvin convert to Celsius T = T-CtoK es=bucksat(T,P) em=0.01*rh*es q=622*em/(P-0.378*em) return q,em #------------------------------------------------------------------------------ def RHcalc(T,P,Q): """ computes relative humidity given T,P, & Q """ es=6.1121*np.exp(17.502*T/(T+240.97))*(1.0007+3.46e-6*P) em=Q*P/(0.378*Q+0.622) RHrf=100*em/es return RHrf