import numpy as np from util_subs import (CtoK, kappa, gc, visc_air) # --------------------------------------------------------------------- def cdn_calc(u10n, Ta, Tp, lat, meth="S80"): """ Calculates neutral drag coefficient Parameters ---------- u10n : float neutral 10m wind speed (m/s) Ta : float air temperature (K) Tp : float wave period lat : float latitude meth : str Returns ------- cdn : float """ cdn = np.zeros(Ta.shape)*np.nan if (meth == "S80"): cdn = np.where(u10n <= 3, (0.61+0.567/u10n)*0.001, (0.61+0.063*u10n)*0.001) elif (meth == "LP82"): cdn = np.where((u10n < 11) & (u10n >= 4), 1.2*0.001, np.where((u10n <= 25) & (u10n >= 11), (0.49+0.065*u10n)*0.001, 1.14*0.001)) elif (meth == "S88" or meth == "UA" or meth == "ERA5" or meth == "C30" or meth == "C35" or meth == "C40"): cdn = cdn_from_roughness(u10n, Ta, None, lat, meth) elif (meth == "YT96"): # for u<3 same as S80 cdn = np.where((u10n < 6) & (u10n >= 3), (0.29+3.1/u10n+7.7/u10n**2)*0.001, np.where((u10n <= 26) & (u10n >= 6), (0.60 + 0.070*u10n)*0.001, (0.61+0.567/u10n)*0.001)) elif (meth == "LY04"): cdn = np.where(u10n >= 0.5, (0.142+(2.7/u10n)+(u10n/13.09))*0.001, (0.142+(2.7/0.5)+(0.5/13.09))*0.001) else: print("unknown method cdn: "+meth) return cdn # --------------------------------------------------------------------- def cdn_from_roughness(u10n, Ta, Tp, lat, meth="S88"): """ Calculates neutral drag coefficient from roughness length Parameters ---------- u10n : float neutral 10m wind speed (m/s) Ta : float air temperature (K) Tp : float wave period lat : float latitude meth : str Returns ------- cdn : float """ g, tol = gc(lat, None), 0.000001 cdn, usr = np.zeros(Ta.shape), np.zeros(Ta.shape) cdnn = (0.61+0.063*u10n)*0.001 zo, zc, zs = np.zeros(Ta.shape), np.zeros(Ta.shape), np.zeros(Ta.shape) for it in range(5): cdn = np.copy(cdnn) usr = np.sqrt(cdn*u10n**2) if (meth == "S88"): # Charnock roughness length (eq. 4 in Smith 88) zc = 0.011*np.power(usr, 2)/g # smooth surface roughness length (eq. 6 in Smith 88) zs = 0.11*visc_air(Ta)/usr zo = zc + zs # eq. 7 & 8 in Smith 88 elif (meth == "UA"): # valid for 0<u<18m/s # Zeng et al. 1998 (24) zo = 0.013*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr elif (meth == "C30"): a = 0.011*np.ones(Ta.shape) a = np.where(u10n > 10, 0.011+(u10n-10)*(0.018-0.011)/(18-10), np.where(u10n > 18, 0.018, a)) zo = a*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr elif (meth == "C35"): a = 0.011*np.ones(Ta.shape) # a = np.where(u10n > 19, 0.0017*19-0.0050, # np.where((u10n > 7) & (u10n <= 18), # 0.0017*u10n-0.0050, a)) a = np.where(u10n > 19, 0.0017*19-0.0050, 0.0017*u10n-0.0050) zo = 0.11*visc_air(Ta)/usr+a*np.power(usr, 2)/g elif (meth == "C40"): a = 0.011*np.ones(Ta.shape) a = np.where(u10n > 22, 0.0016*22-0.0035, 0.0016*u10n-0.0035) zo = a*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr # surface roughness elif (meth == "ERA5"): # eq. (3.26) p.38 over sea IFS Documentation cy46r1 zo = 0.018*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr else: print("unknown method for cdn_from_roughness "+meth) cdnn = (kappa/np.log(10/zo))**2 cdn = np.where(np.abs(cdnn-cdn) < tol, cdnn, np.nan) return cdn # --------------------------------------------------------------------- def cd_calc(cdn, height, ref_ht, psim): """ Calculates drag coefficient at reference height Parameters ---------- cdn : float neutral drag coefficient height : float original sensor height (m) ref_ht : float reference height (m) psim : float momentum stability function Returns ------- cd : float """ cd = (cdn/np.power(1+(np.sqrt(cdn)*(np.log(height/ref_ht)-psim))/kappa, 2)) return cd # --------------------------------------------------------------------- def ctcqn_calc(zol, cdn, u10n, zo, Ta, meth="S80"): """ Calculates neutral heat and moisture exchange coefficients Parameters ---------- zol : float height over MO length cdn : float neutral drag coefficient u10n : float neutral 10m wind speed (m/s) zo : float surface roughness (m) Ta : float air temperature (K) meth : str Returns ------- ctn : float neutral heat exchange coefficient cqn : float neutral moisture exchange coefficient """ if (meth == "S80" or meth == "S88" or meth == "YT96"): cqn = np.ones(Ta.shape)*1.20*0.001 # from S88 ctn = np.ones(Ta.shape)*1.00*0.001 elif (meth == "LP82"): cqn = np.where((zol <= 0) & (u10n > 4) & (u10n < 14), 1.15*0.001, 1*0.001) ctn = np.where((zol <= 0) & (u10n > 4) & (u10n < 25), 1.13*0.001, 0.66*0.001) elif (meth == "LY04"): cqn = 34.6*0.001*np.sqrt(cdn) ctn = np.where(zol <= 0, 32.7*0.001*np.sqrt(cdn), 18*0.001*np.sqrt(cdn)) elif (meth == "UA"): usr = np.sqrt(cdn*np.power(u10n, 2)) # Zeng et al. 1998 (25) re=usr*zo/visc_air(Ta) zoq = zo/np.exp(2.67*np.power(re, 1/4)-2.57) zot = zoq cqn = np.where((u10n > 0.5) & (u10n < 18), np.power(kappa, 2) / (np.log(10/zo)*np.log(10/zoq)), np.nan) ctn = np.where((u10n > 0.5) & (u10n < 18), np.power(kappa, 2) / (np.log(10/zo)*np.log(10/zoq)), np.nan) elif (meth == "C30"): usr = np.sqrt(cdn*np.power(u10n, 2)) rr = zo*usr/visc_air(Ta) zoq = np.where(5e-5/np.power(rr, 0.6) > 1.15e-4, 1.15e-4, 5e-5/np.power(rr, 0.6)) # moisture roughness zot=zoq # temperature roughness cqn = kappa**2/np.log(10/zo)/np.log(10/zoq) ctn = kappa**2/np.log(10/zo)/np.log(10/zot) elif (meth == "C35"): usr = np.sqrt(cdn*np.power(u10n, 2)) rr = zo*usr/visc_air(Ta) zoq = np.where(5.8e-5/np.power(rr, 0.72) > 1.6e-4, 1.6e-4, 5.8e-5/np.power(rr, 0.72)) # moisture roughness zot=zoq # temperature roughness cqn = kappa**2/np.log(10/zo)/np.log(10/zoq) ctn = kappa**2/np.log(10/zo)/np.log(10/zot) elif (meth == "C40"): usr = np.sqrt(cdn*np.power(u10n, 2)) rr = zo*usr/visc_air(Ta) zot = np.where(1.0e-4/np.power(rr, 0.55) > 2.4e-4/np.power(rr, 1.2), 2.4e-4/np.power(rr, 1.2), 1.0e-4/np.power(rr, 0.55)) # temperature roughness zoq = np.where(2.0e-5/np.power(rr,0.22) > 1.1e-4/np.power(rr,0.9), 1.1e-4/np.power(rr,0.9), 2.0e-5/np.power(rr,0.22)) # moisture roughness determined by the CLIMODE, GASEX and CBLAST data # zoq = np.where(5e-5/np.power(rr, 0.6) > 1.15e-4, 1.15e-4, # 5e-5/np.power(rr, 0.6)) # moisture roughness as in C30 cqn = kappa**2/np.log(10/zo)/np.log(10/zoq) ctn = kappa**2/np.log(10/zo)/np.log(10/zot) elif (meth == "ERA5"): # eq. (3.26) p.38 over sea IFS Documentation cy46r1 usr = np.sqrt(cdn*np.power(u10n, 2)) zot = 0.40*visc_air(Ta)/usr zoq = 0.62*visc_air(Ta)/usr cqn = kappa**2/np.log(10/zo)/np.log(10/zoq) ctn = kappa**2/np.log(10/zo)/np.log(10/zot) else: print("unknown method ctcqn: "+meth) return ctn, cqn # --------------------------------------------------------------------- def ctcq_calc(cdn, cd, ctn, cqn, ht, hq, ref_ht, psit, psiq): """ Calculates heat and moisture exchange coefficients at reference height Parameters ---------- cdn : float neutral drag coefficient cd : float drag coefficient at reference height ctn : float neutral heat exchange coefficient cqn : float neutral moisture exchange coefficient h_t : float original temperature sensor height (m) h_q : float original moisture sensor height (m) ref_ht : float reference height (m) psit : float heat stability function psiq : float moisture stability function Returns ------- ct : float heat exchange coefficient cq : float moisture exchange coefficient """ ct = (ctn*np.sqrt(cd/cdn) / (1+ctn*((np.log(ht/ref_ht)-psit)/(kappa*np.sqrt(cdn))))) cq = (cqn*np.sqrt(cd/cdn) / (1+cqn*((np.log(hq/ref_ht)-psiq)/(kappa*np.sqrt(cdn))))) return ct, cq # --------------------------------------------------------------------- def get_stabco(meth="S80"): """ Gives the coefficients \\alpha, \\beta, \\gamma for stability functions Parameters ---------- meth : str Returns ------- coeffs : float """ alpha, beta, gamma = 0, 0, 0 if (meth == "S80" or meth == "S88" or meth == "LY04" or meth == "UA" or meth == "ERA5" or meth == "C30" or meth == "C35" or meth == "C40"): alpha, beta, gamma = 16, 0.25, 5 # Smith 1980, from Dyer (1974) elif (meth == "LP82"): alpha, beta, gamma = 16, 0.25, 7 elif (meth == "YT96"): alpha, beta, gamma = 20, 0.25, 5 else: print("unknown method stabco: "+meth) coeffs = np.zeros(3) coeffs[0] = alpha coeffs[1] = beta coeffs[2] = gamma return coeffs # --------------------------------------------------------------------- def psim_calc(zol, meth="S80"): """ Calculates momentum stability function Parameters ---------- zol : float height over MO length meth : str Returns ------- psim : float """ if (meth == "ERA5"): psim = psim_era5(zol) elif (meth == "C30" or meth == "C35" or meth == "C40"): psim = psiu_26(zol, meth) else: psim = np.where(zol < 0, psim_conv(zol, meth), psim_stab(zol, meth)) return psim # --------------------------------------------------------------------- def psit_calc(zol, meth="S80"): """ Calculates heat stability function Parameters ---------- zol : float height over MO length meth : str parameterisation method Returns ------- psit : float """ if (meth == "ERA5"): psit = np.where(zol < 0, psi_conv(zol, meth), psi_era5(zol)) elif (meth == "C30" or meth == "C35" or meth == "C40"): psit = psit_26(zol) else: psit = np.where(zol < 0, psi_conv(zol, meth), psi_stab(zol, meth)) return psit # --------------------------------------------------------------------- def psi_era5(zol): """ Calculates heat stability function for stable conditions for method ERA5 Parameters ---------- zol : float height over MO length Returns ------- psit : float """ # eq (3.22) p. 37 IFS Documentation cy46r1 a, b, c, d = 1, 2/3, 5, 0.35 psit = -b*(zol-c/d)*np.exp(-d*zol)-np.power(1+(2/3)*a*zol, 1.5)-(b*c)/d+1 return psit # --------------------------------------------------------------------- def psit_26(zol): """ Computes temperature structure function as in C35 Parameters ---------- zol : float height over MO length Returns ------- psi : float """ b, d = 2/3, 0.35 dzol = np.where(d*zol > 50, 50, d*zol) psi = np.where(zol > 0,-(np.power(1+b*zol, 1.5)+b*(zol-14.28) * np.exp(-dzol)+8.525), np.nan) psik = np.where(zol < 0, 2*np.log((1+np.sqrt(1-15*zol))/2), np.nan) psic = np.where(zol < 0, 1.5*np.log((1+np.power(1-34.15*zol, 1/3) + np.power(1-34.15*zol, 2/3))/3)-np.sqrt(3) * np.arctan(1+2*np.power(1-34.15*zol, 1/3))/np.sqrt(3) + 4*np.arctan(1)/np.sqrt(3), np.nan) f = np.power(zol, 2)/(1+np.power(zol, 2)) psi = np.where(zol < 0, (1-f)*psik+f*psic, psi) return psi # --------------------------------------------------------------------- def psi_conv(zol, meth): """ Calculates heat stability function for unstable conditions Parameters ---------- zol : float height over MO length meth : str parameterisation method Returns ------- psit : float """ coeffs = get_stabco(meth) alpha, beta = coeffs[0], coeffs[1] xtmp = np.power(1-alpha*zol, beta) psit = 2*np.log((1+np.power(xtmp, 2))*0.5) return psit # --------------------------------------------------------------------- def psi_stab(zol, meth): """ Calculates heat stability function for stable conditions Parameters ---------- zol : float height over MO length meth : str parameterisation method Returns ------- psit : float """ coeffs = get_stabco(meth) gamma = coeffs[2] psit = -gamma*zol return psit # --------------------------------------------------------------------- def psim_era5(zol): """ Calculates momentum stability function for method ERA5 Parameters ---------- zol : float height over MO length Returns ------- psim : float """ # eq (3.20, 3.22) p. 37 IFS Documentation cy46r1 coeffs = get_stabco("ERA5") alpha, beta = coeffs[0], coeffs[1] xtmp = np.power(1-alpha*zol, beta) a, b, c, d = 1, 2/3, 5, 0.35 psim = np.where(zol < 0, np.pi/2-2*np.arctan(xtmp) + np.log((np.power(1+xtmp, 2)*(1+np.power(xtmp, 2)))/8), -b*(zol-c/d)*np.exp(-d*zol)-a*zol-(b*c)/d) return psim # --------------------------------------------------------------------- def psiu_26(zol, meth): """ Computes velocity structure function C35 Parameters ---------- zol : float height over MO length Returns ------- psi : float """ if (meth == "C30"): dzol = np.where(0.35*zol > 50, 50, 0.35*zol) # stable psi = np.where(zol > 0, -((1+zol)+0.6667*(zol-14.28)*np.exp(-dzol) + 8.525), np.nan) x = np.where(zol < 0, np.power(1-15*zol, 0.25), np.nan) psik = np.where(zol < 0, 2*np.log((1+x)/2)+np.log((1+np.power(x, 2)) / 2)-2*np.arctan(x)+2*np.arctan(1), np.nan) x = np.where(zol < 0, np.power(1-10.15*zol, 0.3333), np.nan) psic = np.where(zol < 0, 1.5*np.log((1+x+np.power(x, 2))/3) - np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3)) + 4*np.arctan(1)/np.sqrt(3), np.nan) f = np.power(zol, 2)/(1+np.power(zol, 2)) psi = np.where(zol < 0, (1-f)*psik+f*psic, psi) elif (meth == "C35" or meth == "C40"): dzol = np.where(0.35*zol > 50, 50, 0.35*zol) # stable a, b, c, d = 0.7, 3/4, 5, 0.35 psi = np.where(zol > 0, -(a*zol+b*(zol-c/d)*np.exp(-dzol)+b*c/d), np.nan) x = np.where(zol < 0, np.power(1-15*zol, 0.25), np.nan) psik = np.where(zol < 0, 2*np.log((1+x)/2)+np.log((1+x**2)/2) - 2*np.arctan(x)+2*np.arctan(1), np.nan) x = np.where(zol < 0, np.power(1-10.15*zol, 0.3333), np.nan) psic = np.where(zol < 0, 1.5*np.log((1+x+np.power(x, 2))/3) - np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3)) + 4*np.arctan(1)/np.sqrt(3), np.nan) f = np.power(zol, 2)/(1+np.power(zol, 2)) psi = np.where(zol < 0, (1-f)*psik+f*psic, psi) return psi #------------------------------------------------------------------------------ def psim_conv(zol, meth): """ Calculates momentum stability function for unstable conditions Parameters ---------- zol : float height over MO length meth : str parameterisation method Returns ------- psim : float """ coeffs = get_stabco(meth) alpha, beta = coeffs[0], coeffs[1] xtmp = np.power(1-alpha*zol, beta) psim = (2*np.log((1+xtmp)*0.5)+np.log((1+np.power(xtmp, 2))*0.5) - 2*np.arctan(xtmp)+np.pi/2) return psim # --------------------------------------------------------------------- def psim_stab(zol, meth): """ Calculates momentum stability function for stable conditions Parameters ---------- zol : float height over MO length meth : str parameterisation method Returns ------- psim : float """ coeffs = get_stabco(meth) gamma = coeffs[2] psim = -gamma*zol return psim # --------------------------------------------------------------------- def get_skin(sst, qsea, rho, Rl, Rs, Rnl, cp, lv, tkt, usr, tsr, qsr, lat): """ Computes cool skin Parameters ---------- sst : float sea surface temperature ($^\circ$\,C) qsea : float specific humidity over sea (g/kg) rho : float density of air (kg/m^3) Rl : float downward longwave radiation (W/m^2) Rs : float downward shortwave radiation (W/m^2) Rnl : float upwelling IR radiation (W/m^2) cp : float specific heat of air at constant pressure lv : float latent heat of vaporization tkt : float cool skin thickness usr : float friction velocity tsr : float star temperature qsr : float star humidity lat : float latitude Returns ------- dter : float dqer : float """ # coded following Saunders (1967) with lambda = 6 g = gc(lat, None) if (np.nanmin(sst) > 200): # if sst in Kelvin convert to Celsius sst = sst-CtoK # ************ cool skin constants ******* # density of water, specific heat capacity of water, water viscosity, # thermal conductivity of water rhow, cpw, visw, tcw = 1022, 4000, 1e-6, 0.6 Al = 2.1e-5*np.power(sst+3.2, 0.79) be = 0.026 bigc = 16*g*cpw*np.power(rhow*visw, 3)/(np.power(tcw, 2)*np.power(rho, 2)) wetc = 0.622*lv*qsea/(287.1*np.power(sst+273.16, 2)) Rns = 0.945*Rs # albedo correction hsb = -rho*cp*usr*tsr hlb = -rho*lv*usr*qsr qout = Rnl+hsb+hlb dels = Rns*(0.065+11*tkt-6.6e-5/tkt*(1-np.exp(-tkt/8.0e-4))) qcol = qout-dels alq = Al*qcol+be*hlb*cpw/lv xlamx = 6*np.ones(sst.shape) xlamx = np.where(alq > 0, 6/(1+(bigc*alq/usr**4)**0.75)**0.333, 6) tkt = np.where(alq > 0, xlamx*visw/(np.sqrt(rho/rhow)*usr), np.where(xlamx*visw/(np.sqrt(rho/rhow)*usr) > 0.01, 0.01, xlamx*visw/(np.sqrt(rho/rhow)*usr))) dter = qcol*tkt/tcw dqer = wetc*dter return dter, dqer, tkt # --------------------------------------------------------------------- def get_gust(beta, Ta, usr, tsrv, zi, lat): """ Computes gustiness Parameters ---------- beta : float constant Ta : float air temperature (K) usr : float friction velocity (m/s) tsrv : float star virtual temperature of air (K) zi : int scale height of the boundary layer depth (m) lat : float latitude Returns ------- ug : float """ if (np.nanmax(Ta) < 200): # convert to K if in Celsius Ta = Ta+273.16 g = gc(lat, None) Bf = (-g/Ta)*usr*tsrv ug = np.ones(np.shape(Ta))*0.2 ug = np.where(Bf > 0, beta*np.power(Bf*zi, 1/3), 0.2) return ug # --------------------------------------------------------------------- def get_L(L, lat, usr, tsr, qsr, t10n, tv10n, qair, h_in, T, Ta, th, tv, sst, dt, dtv, dq, zo, wind, monob, meth): """ calculates Monin-Obukhov length and virtual star temperature Parameters ---------- L : int Monin-Obukhov length definition options "S80" : default for S80, S88, LP82, YT96 and LY04 "ERA5" : following ERA5 (IFS Documentation cy46r1), default for ERA5 lat : float latitude usr : float friction wind speed (m/s) tsr : float star temperature (K) qsr : float star specific humidity (g/kg) t10n : float neutral temperature at 10m (K) tv10n : float neutral virtual temperature at 10m (K) qair : float air specific humidity (g/kg) h_in : float sensor heights (m) T : float air temperature (K) Ta : float air temperature (K) th : float potential temperature (K) tv : float virtual temperature (K) sst : float sea surface temperature (K) dt : float temperature difference (K) dq : float specific humidity difference (g/kg) wind : float wind speed (m/s) monob : float Monin-Obukhov length from previous iteration step (m) meth : str bulk parameterisation method option: "S80", "S88", "LP82", "YT96", "UA", "LY04", "C30", "C35", "C40", "ERA5" Returns ------- tsrv : float virtual star temperature (K) monob : float M-O length (m) """ g = gc(lat) if (L == "S80"): tsrv = tsr+0.61*t10n*qsr monob = ((tv10n*np.power(usr, 2))/(g*kappa*tsrv)) monob = np.where(np.fabs(monob) < 1, np.where(monob < 0, -1, 1), monob) elif (L == "ERA5"): tsrv = tsr+0.61*t10n*qsr Rb = ((g*h_in[0]*((2*dt)/(Ta+sst-g*h_in[0])+0.61*dq)) / np.power(wind, 2)) zo = (0.11*visc_air(Ta)/usr+0.018*np.power(usr, 2)/g) zot = 0.40*visc_air(Ta)/usr zol = (Rb*(np.power(np.log((h_in[0]+zo)/zo)-psim_calc((h_in[0]+zo) / monob, meth) + psim_calc(zo/monob, meth), 2) / (np.log((h_in[0]+zo)/zot) - psit_calc((h_in[0]+zo)/monob, meth) + psit_calc(zot/monob, meth)))) monob = h_in[0]/zol return tsrv, monob #------------------------------------------------------------------------------ def get_strs(h_in, monob, wind, zo, zot, zoq, dt, dq, dter, dqer, ct, cq, cskin, meth): """ calculates star wind speed, temperature and specific humidity Parameters ---------- h_in : float sensor heights (m) monob : float M-O length (m) wind : float wind speed (m/s) zo : float momentum roughness length (m) zot : float temperature roughness length (m) zoq : float moisture roughness length (m) dt : float temperature difference (K) dq : float specific humidity difference (g/kg) dter : float cskin temperature adjustment (K) dqer : float cskin q adjustment (g/kg) ct : float temperature exchange coefficient cq : float moisture exchange coefficient cskin : int cool skin adjustment switch meth : str bulk parameterisation method option: "S80", "S88", "LP82", "YT96", "UA", "LY04", "C30", "C35", "C40", "ERA5" Returns ------- usr : float friction wind speed (m/s) tsr : float star temperature (K) qsr : float star specific humidity (g/kg) """ if (meth == "UA"): usr = np.where(h_in[0]/monob <= -1.574, kappa*wind / (np.log(-1.574*monob/zo)-psim_calc(-1.574, meth) + psim_calc(zo/monob, meth) + 1.14*(np.power(-h_in[0]/monob, 1/3) - np.power(1.574, 1/3))), np.where(h_in[0]/monob < 0, kappa*wind / (np.log(h_in[0]/zo) - psim_calc(h_in[0]/monob, meth) + psim_calc(zo/monob, meth)), np.where(h_in[0]/monob <= 1, kappa*wind / (np.log(h_in[0]/zo) + 5*h_in[0]/monob-5*zo/monob), kappa*wind/(np.log(monob/zo)+5 - 5*zo/monob + 5*np.log(h_in[0]/monob) + h_in[0]/monob-1)))) # Zeng et al. 1998 (7-10) tsr = np.where(h_in[1]/monob < -0.465, kappa*(dt+dter*cskin) / (np.log((-0.465*monob)/zot) - psit_calc(-0.465, meth)+0.8*(np.power(0.465, -1/3) - np.power(-h_in[1]/monob, -1/3))), np.where(h_in[1]/monob < 0, kappa*(dt+dter*cskin) / (np.log(h_in[1]/zot) - psit_calc(h_in[1]/monob, meth) + psit_calc(zot/monob, meth)), np.where(h_in[1]/monob <= 1, kappa*(dt+dter*cskin) / (np.log(h_in[1]/zot) + 5*h_in[1]/monob-5*zot/monob), kappa*(dt+dter*cskin) / (np.log(monob/zot)+5 - 5*zot/monob+5*np.log(h_in[1]/monob) + h_in[1]/monob-1)))) # Zeng et al. 1998 (11-14) qsr = np.where(h_in[2]/monob < -0.465, kappa*(dq+dqer*cskin) / (np.log((-0.465*monob)/zoq) - psit_calc(-0.465, meth)+psit_calc(zoq/monob, meth) + 0.8*(np.power(0.465, -1/3) - np.power(-h_in[2]/monob, -1/3))), np.where(h_in[2]/monob < 0, kappa*(dq+dqer*cskin)/(np.log(h_in[1]/zot) - psit_calc(h_in[2]/monob, meth) + psit_calc(zoq/monob, meth)), np.where(h_in[2]/monob <= 1, kappa*(dq+dqer*cskin) / (np.log(h_in[1]/zoq)+5*h_in[2]/monob - 5*zoq/monob), kappa*(dq+dqer*cskin)/ (np.log(monob/zoq)+5-5*zoq/monob + 5*np.log(h_in[2]/monob) + h_in[2]/monob-1)))) elif (meth == "C30" or meth == "C35" or meth == "C40"): usr = (wind*kappa/(np.log(h_in[0]/zo)-psiu_26(h_in[0]/monob, meth))) tsr = ((dt+dter*cskin)*(kappa/(np.log(h_in[1]/zot) - psit_26(h_in[1]/monob)))) qsr = ((dq+dqer*cskin)*(kappa/(np.log(h_in[2]/zoq) - psit_26(h_in[2]/monob)))) else: usr = (wind*kappa/(np.log(h_in[0]/zo)-psim_calc(h_in[0]/monob, meth))) tsr = ct*wind*(dt+dter*cskin)/usr qsr = cq*wind*(dq+dqer*cskin)/usr return usr, tsr, qsr # ---------------------------------------------------------------------