import numpy as np """ Conversion factor for [:math:`^\\circ` C] to [:math:`^\\circ` K] """ CtoK = 273.16 # 273.15 """ von Karman's constant """ kappa = 0.4 # NOTE: 0.41 # --------------------------------------------------------------------- def charnock_C35(wind, u10n, usr, seastate, waveage, wcp, sigH, lat): g = gc(lat, None) a1, a2 = 0.0017, -0.0050 charnC = np.where(u10n > 19, a1*19+a2, a1*u10n+a2) A, B = 0.114, 0.622 # wave-age dependent coefficients Ad, Bd = 0.091, 2.0 # Sea-state/wave-age dependent coefficients charnW = A*(usr/wcp)**B zoS = sigH*Ad*(usr/wcp)**Bd charnS = (zoS*g)/usr**2 charn = np.where(wind > 10, 0.011+(wind-10)/(18-10)*(0.018-0.011), np.where(wind > 18, 0.018, 0.011*np.ones(np.shape(wind)))) if waveage: if seastate: charn = charnS else: charn = charnW else: charn = charnC ac = np.zeros((len(wind), 3)) ac[:, 0] = charn ac[:, 1] = charnS ac[:, 2] = charnW return ac # --------------------------------------------------------------------- def cd_C35(u10n, wind, usr, charn, monob, Ta, hh_in, lat): g = gc(lat, None) zo = charn*usr**2/g+0.11*visc_air(Ta)/usr # surface roughness rr = zo*usr/visc_air(Ta) # These thermal roughness lengths give Stanton and zoq = np.where(5.8e-5/rr**0.72 > 1.6e-4, 1.6e-4, 5.8e-5/rr**0.72) zot = zoq # Dalton numbers that closely approximate COARE 3.0 cdhf = kappa/(np.log(hh_in[0]/zo)-psiu_26(hh_in[0]/monob)) cthf = kappa/(np.log(hh_in[1]/zot)-psit_26(hh_in[1]/monob)) cqhf = kappa/(np.log(hh_in[2]/zoq)-psit_26(hh_in[2]/monob)) return zo, cdhf, cthf, cqhf # --------------------------------------------------------------------- def cdn_calc(u10n, Ta, Tp, method="Smith80"): if (method == "Smith80"): cdn = np.where(u10n <= 3, (0.61+0.567/u10n)*0.001, (0.61+0.063*u10n)*0.001) elif (method == "LP82"): cdn = np.where((u10n < 11) & (u10n >= 4), 1.2*0.001, np.where((u10n <= 25) & (u10n >= 11), (0.49+0.065*u10n)*0.001, 1.14*0.001)) elif (method == "Smith88" or method == "COARE3.0" or method == "COARE4.0" or method == "UA" or method == "ERA5"): cdn = cdn_from_roughness(u10n, Ta, None, method) elif (method == "HEXOS"): # Smith et al. 1991 #(0.27 + 0.116*u10n)*0.001 Smith et al. 1992 cdn = (0.5+0.091*u10n)*0.001 elif (method == "HEXOSwave"): cdn = cdn_from_roughness(u10n, Ta, Tp, method) elif (method == "YT96"): # for u<3 same as Smith80 cdn = np.where((u10n < 6) & (u10n >= 3), (0.29+3.1/u10n+7.7/u10n**2)*0.001, np.where((u10n <= 26) & (u10n >= 6), (0.60 + 0.070*u10n)*0.001, (0.61+0.567/u10n)*0.001)) elif (method == "LY04"): cdn = np.where(u10n >= 0.5, (0.142+(2.7/u10n)+(u10n/13.09))*0.001, np.nan) else: print("unknown method cdn: "+method) return cdn # --------------------------------------------------------------------- def cdn_from_roughness(u10n, Ta, Tp, method="Smith88"): g, tol = 9.812, 0.000001 cdn, usr = np.zeros(Ta.shape), np.zeros(Ta.shape) cdnn = (0.61+0.063*u10n)*0.001 zo, zc, zs = np.zeros(Ta.shape), np.zeros(Ta.shape), np.zeros(Ta.shape) for it in range(5): cdn = np.copy(cdnn) usr = np.sqrt(cdn*u10n**2) if (method == "Smith88"): # .....Charnock roughness length (equn 4 in Smith 88) zc = 0.011*np.power(usr, 2)/g # .....smooth surface roughness length (equn 6 in Smith 88) zs = 0.11*visc_air(Ta)/usr zo = zc + zs # .....equns 7 & 8 in Smith 88 to calculate new CDN elif (method == "COARE3.0"): zc = 0.011 + (u10n-10)/(18-10)*(0.018-0.011) zc = np.where(u10n < 10, 0.011, np.where(u10n > 18, 0.018, zc)) zs = 0.11*visc_air(Ta)/usr zo = zc*np.power(usr, 2)/g + zs elif (method == "HEXOSwave"): if ((Tp is None) or np.nansum(Tp) == 0): Tp = 0.729*u10n # Taylor and Yelland 2001 cp_wave = g*Tp/2/np.pi # use input wave period zo = 0.48*np.power(usr, 3)/g/cp_wave # Smith et al. 1992 elif (method == "UA"): # valid for 0 4) & (u10n < 14), 1.15*0.001, np.nan) ctn = np.where((zol <= 0) & (u10n > 4) & (u10n < 25), 1.13*0.001, 0.66*0.001) elif (method == "HEXOS" or method == "HEXOSwave"): cqn = np.where((u10n <= 23) & (u10n >= 3), 1.1*0.001, np.nan) ctn = np.where((u10n <= 18) & (u10n >= 3), 1.1*0.001, np.nan) elif (method == "COARE3.0" or method == "COARE4.0"): usr = (cdn*u10n**2)**0.5 rr = zo*usr/visc_air(Ta) zoq = 5.5e-5/rr**0.6 zoq[zoq > 1.15e-4] = 1.15e-4 zot = zoq cqn = kappa**2/np.log(10/zo)/np.log(10/zoq) ctn = kappa**2/np.log(10/zo)/np.log(10/zot) elif (method == "LY04"): cqn = 34.6*0.001*cdn**0.5 ctn = np.where(zol <= 0, 32.7*0.001*cdn**0.5, 18*0.001*cdn**0.5) elif (method == "UA"): usr = (cdn * u10n**2)**0.5 # Zeng et al. 1998 (25) zoq = zo*np.exp(-(2.67*np.power(usr*zo/visc_air(Ta), 1/4)-2.57)) zot = zoq cqn = np.where((u10n > 0.5) & (u10n < 18), np.power(kappa, 2) / (np.log(10/zo)*np.log(10/zoq)), np.nan) ctn = np.where((u10n > 0.5) & (u10n < 18), np.power(kappa, 2) / (np.log(10/zo)*np.log(10/zoq)), np.nan) elif (method == "ERA5"): # eq. (3.26) p.40 over sea IFS Documentation cy46r1 usr = np.sqrt(cdn*np.power(u10n, 2)) zot = 0.40*visc_air(Ta)/usr zoq = 0.62*visc_air(Ta)/usr cqn = kappa**2/np.log(10/zo)/np.log(10/zoq) ctn = kappa**2/np.log(10/zo)/np.log(10/zot) else: print("unknown method ctcqn: "+method) return ctn, cqn # --------------------------------------------------------------------- def cd_calc(cdn, height, ref_ht, psim): cd = (cdn*np.power(1+np.sqrt(cdn)*np.power(kappa, -1) * (np.log(height/ref_ht)-psim), -2)) return cd # --------------------------------------------------------------------- def ctcq_calc(cdn, cd, ctn, cqn, h_t, h_q, ref_ht, psit, psiq): ct = ctn*(cd/cdn)**0.5/(1+ctn*((np.log(h_t/ref_ht)-psit)/(kappa*cdn**0.5))) cq = cqn*(cd/cdn)**0.5/(1+cqn*((np.log(h_q/ref_ht)-psiq)/(kappa*cdn**0.5))) return ct, cq # --------------------------------------------------------------------- def psim_calc(zol, method="Smith80"): coeffs = get_stabco(method) alpha, beta, gamma = coeffs[0], coeffs[1], coeffs[2] if (method == "COARE3.0" or method == "COARE4.0"): psim = np.where(zol < 0, psim_conv_coare3(zol, alpha, beta, gamma), psim_stab_coare3(zol, alpha, beta, gamma)) elif (method == "ERA5"): psim = np.where(zol < 0, psim_conv(zol, alpha, beta, gamma), psim_stab_era5(zol, alpha, beta, gamma)) else: psim = np.where(zol < 0, psim_conv(zol, alpha, beta, gamma), psim_stab(zol, alpha, beta, gamma)) return psim # --------------------------------------------------------------------- def psit_calc(zol, method="Smith80"): coeffs = get_stabco(method) alpha, beta, gamma = coeffs[0], coeffs[1], coeffs[2] if (method == "COARE3.0" or method == "COARE4.0"): psit = np.where(zol < 0, psi_conv_coare3(zol, alpha, beta, gamma), psi_stab_coare3(zol, alpha, beta, gamma)) elif (method == "ERA5"): psit = np.where(zol < 0, psi_conv(zol, alpha, beta, gamma), psi_stab_era5(zol, alpha, beta, gamma)) else: psit = np.where(zol < 0, psi_conv(zol, alpha, beta, gamma), psi_stab(zol, alpha, beta, gamma)) return psit # --------------------------------------------------------------------- def get_stabco(method="Smith80"): if (method == "Smith80" or method == "Smith88" or method == "LY04" or method == "UA" or method == "ERA5"): alpha, beta, gamma = 16, 0.25, 5 # Smith 1980, from Dyer (1974) elif (method == "LP82"): alpha, beta, gamma = 16, 0.25, 7 elif (method == "HEXOS" or method == "HEXOSwave"): alpha, beta, gamma = 16, 0.25, 8 elif (method == "YT96"): alpha, beta, gamma = 20, 0.25, 5 elif (method == "COARE3.0" or method == "COARE4.0"): # use separate subroutine alpha, beta, gamma = 15, 1/3, 5 # not sure about gamma=34.15 else: print("unknown method stabco: "+method) coeffs = np.zeros(3) coeffs[0] = alpha coeffs[1] = beta coeffs[2] = gamma return coeffs # --------------------------------------------------------------------- def psi_conv_coare3(zol, alpha, beta, gamma): x = (1-alpha*zol)**0.5 # Kansas unstable psik = 2*np.log((1+x)/2.) y = (1-34.15*zol)**beta psic = (1.5*np.log((1+y+y*y)/3.)-(3)**0.5*np.arctan((1+2*y)/(3)**0.5) + 4*np.arctan(1)/(3)**0.5) f = zol*zol/(1.+zol*zol) psit = (1-f)*psik+f*psic return psit # --------------------------------------------------------------------- def psi_stab_coare3(zol, alpha, beta, gamma): # Stable c = np.where(0.35*zol > 50, 50, 0.35*zol) # Stable psit = -((1+2*zol/3)**1.5+0.6667*(zol-14.28)/np.exp(c)+8.525) return psit # --------------------------------------------------------------------- def psi_stab_era5(zol, alpha, beta, gamma): # eq (3.22) p. 39 IFS Documentation cy46r1 a, b, c, d = 1, 2/3, 5, 0.35 psit = -b*(zol-c/d)*np.exp(-d*zol)-np.power(1+(2/3)*a*zol, 1.5)-(b*c)/d+1 return psit # --------------------------------------------------------------------- def psi_conv(zol, alpha, beta, gamma): xtmp = (1-alpha*zol)**beta psit = 2*np.log((1+xtmp**2)*0.5) return psit # --------------------------------------------------------------------- def psi_stab(zol, alpha, beta, gamma): psit = -gamma*zol return psit # --------------------------------------------------------------------- def psit_26(zet): """ computes temperature structure function as in COARE3.5 """ dzet = np.where(0.35*zet > 50, 50, 0.35*zet) # stable psi = -((1+0.6667*zet)**1.5+0.6667*(zet-14.28)*np.exp(-dzet)+8.525) k = np.where(zet < 0) # unstable x = (1-15*zet[k])**0.5 psik = 2*np.log((1+x)/2) x = (1-34.15*zet[k])**0.3333 psic = (1.5*np.log((1+x+x**2)/3)-np.sqrt(3)*np.arctan((1+2*x) / np.sqrt(3))+4*np.arctan(1)/np.sqrt(3)) f = zet[k]**2/(1+zet[k]**2) psi[k] = (1-f)*psik+f*psic return psi # --------------------------------------------------------------------- def psim_conv_coare3(zol, alpha, beta, gamma): x = (1-15*zol)**0.25 # Kansas unstable psik = 2*np.log((1+x)/2)+np.log((1+x*x)/2)-2*np.arctan(x)+2*np.arctan(1) y = (1-10.15*zol)**0.3333 # Convective psic = (1.5*np.log((1+y+y*y)/3.)-np.sqrt(3)*np.arctan((1+2*y)/np.sqrt(3)) + 4.*np.arctan(1)/np.sqrt(3)) f = zol*zol/(1+zol*zol) psim = (1-f)*psik+f*psic return psim # --------------------------------------------------------------------- def psim_stab_coare3(zol, alpha, beta, gamma): c = np.where(0.35*zol > 50, 50, 0.35*zol) # Stable psim = -((1+1*zol)**1.0+0.6667*(zol-14.28)/np.exp(-c)+8.525) return psim # --------------------------------------------------------------------- def psim_stab_era5(zol, alpha, beta, gamma): # eq (3.22) p. 39 IFS Documentation cy46r1 a, b, c, d = 1, 2/3, 5, 0.35 psim = -b*(zol-c/d)*np.exp(-d*zol)-a*zol-(b*c)/d return psim # --------------------------------------------------------------------- def psim_conv(zol, alpha, beta, gamma): xtmp = (1-alpha*zol)**beta psim = (2*np.log((1+xtmp)*0.5)+np.log((1+xtmp**2)*0.5) - 2*np.arctan(xtmp)+np.pi/2) return psim # --------------------------------------------------------------------- def psim_stab(zol, alpha, beta, gamma): psim = -gamma*zol return psim # --------------------------------------------------------------------- def psiu_26(zet): """ computes velocity structure function COARE3.5 """ dzet = np.where(0.35*zet > 50, 50, 0.35*zet) # stable a, b, c, d = 0.7, 3/4, 5, 0.35 psi = -(a*zet+b*(zet-c/d)*np.exp(-dzet)+b*c/d) k = np.where(zet < 0) # unstable x = (1-15*zet[k])**0.25 psik = 2*np.log((1+x)/2)+np.log((1+x**2)/2)-2*np.arctan(x)+2*np.arctan(1) x = (1-10.15*zet[k])**0.3333 psic = (1.5*np.log((1+x+x**2)/3)-np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3)) + 4*np.arctan(1)/np.sqrt(3)) f = zet[k]**2/(1+zet[k]**2) psi[k] = (1-f)*psik+f*psic return psi # ------------------------------------------------------------------------------ def psiu_40(zet): """ computes velocity structure function COARE3.5 """ dzet = np.where(0.35*zet > 50, 50, 0.35*zet) # stable a, b, c, d = 1, 3/4, 5, 0.35 psi = -(a*zet+b*(zet-c/d)*np.exp(-dzet)+b*c/d) k = np.where(zet < 0) # unstable x = (1-18*zet[k])**0.25 psik = 2*np.log((1+x)/2)+np.log((1+x**2)/2)-2*np.arctan(x)+2*np.arctan(1) x = (1-10*zet[k])**0.3333 psic = (1.5*np.log((1+x+x**2)/3)-np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3)) + 4*np.arctan(1)/np.sqrt(3)) f = zet[k]**2/(1+zet[k]**2) psi[k] = (1-f)*psik+f*psic return psi # --------------------------------------------------------------------- def get_skin(sst, qsea, rho, jcool, Rl, Rs, Rnl, cp, lv, usr, tsr, qsr, lat): # coded following Saunders (1967) with lambda = 6 g = gc(lat, None) if (np.nanmin(sst) > 200): # if Ta in Kelvin convert to Celsius sst = sst-273.16 # ************ cool skin constants ******* # density of water, specific heat capacity of water, water viscosity, # thermal conductivity of water rhow, cpw, visw, tcw = 1022, 4000, 1e-6, 0.6 Al = 2.1e-5*(sst+3.2)**0.79 be = 0.026 bigc = 16*g*cpw*(rhow*visw)**3/(tcw*tcw*rho*rho) wetc = 0.622*lv*qsea/(287.1*(sst+273.16)**2) Rns = 0.945*Rs # albedo correction hsb = -rho*cp*usr*tsr hlb = -rho*lv*usr*qsr qout = Rnl+hsb+hlb tkt = 0.001*np.ones(np.shape(sst)) dels = Rns*(0.065+11*tkt-6.6e-5/tkt*(1-np.exp(-tkt/8.0e-4))) qcol = qout-dels alq = Al*qcol+be*hlb*cpw/lv xlamx = np.where(alq > 0, 6/(1+(bigc*alq/usr**4)**0.75)**0.333, 6) tkt = xlamx*visw/(np.sqrt(rho/rhow)*usr) tkt = np.where(alq > 0, np.where(tkt > 0.01, 0.01, tkt), tkt) dter = qcol*tkt/tcw dqer = wetc*dter return dter, dqer # --------------------------------------------------------------------- def get_gust(beta, Ta, usr, tsrv, zi, lat): if (np.max(Ta) < 200): # convert to K if in Celsius Ta = Ta+273.16 if np.isnan(zi): zi = 600 g = gc(lat, None) Bf = -g/Ta*usr*tsrv ug = np.ones(np.shape(Ta))*0.2 ug = np.where(Bf > 0, beta*np.power(Bf*zi, 1/3), 0.2) return ug # --------------------------------------------------------------------- def get_heights(h): hh = np.zeros(3) if (type(h) == float or type(h) == int): hh[0], hh[1], hh[2] = h, h, h elif len(h) == 2: hh[0], hh[1], hh[2] = h[0], h[1], h[1] else: hh[0], hh[1], hh[2] = h[0], h[1], h[2] return hh # --------------------------------------------------------------------- def svp_calc(T): """ calculates saturation vapour pressure T is in Kelvin svp in mb, pure water """ if (np.nanmin(T) < 200): # if T in Celsius convert to Kelvin T = T+273.16 svp = np.where(np.isnan(T), np.nan, 2.1718e08*np.exp(-4157/(T-33.91-0.16))) return svp # --------------------------------------------------------------------- def qsea_calc(sst, pres): """ sst in Kelvin pres in mb qsea in kg/kg """ if (np.nanmin(sst) < 200): # if sst in Celsius convert to Kelvin sst = sst+273.16 ed = svp_calc(sst) e = 0.98*ed qsea = (0.622*e)/(pres-0.378*e) qsea = np.where(~np.isnan(sst+pres), qsea, np.nan) return qsea # --------------------------------------------------------------------- def q_calc(Ta, rh, pres): """ rh in % air in K, if not it will be converted to K pres in mb qair in kg/kg, as in Haltiner and Martin p.24 """ if (np.nanmin(Ta) < 200): # if sst in Celsius convert to Kelvin Ta = Ta+273.15 e = np.where(np.isnan(Ta+rh+pres), np.nan, svp_calc(Ta)*rh*0.01) qair = np.where(np.isnan(e), np.nan, ((0.62197*e)/(pres-0.378*e))) return qair # ------------------------------------------------------------------------------ def bucksat(T, P): """ computes saturation vapor pressure [mb] as in COARE3.5 given T [degC] and P [mb] """ T = np.asarray(T) if (np.nanmin(T) > 200): # if Ta in Kelvin convert to Celsius T = T-CtoK exx = 6.1121*np.exp(17.502*T/(T+240.97))*(1.0007+3.46e-6*P) return exx # ------------------------------------------------------------------------------ def qsat26sea(T, P): """ computes surface saturation specific humidity [g/kg] as in COARE3.5 given T [degC] and P [mb] """ T = np.asarray(T) if (np.nanmin(T) > 200): # if Ta in Kelvin convert to Celsius T = T-CtoK ex = bucksat(T, P) es = 0.98*ex # reduction at sea surface qs = 622*es/(P-0.378*es) return qs # ------------------------------------------------------------------------------ def qsat26air(T, P, rh): """ computes saturation specific humidity [g/kg] as in COARE3.5 given T [degC] and P [mb] """ T = np.asarray(T) if (np.nanmin(T) > 200): # if Ta in Kelvin convert to Celsius T = T-CtoK es = bucksat(T, P) em = 0.01*rh*es q = 622*em/(P-0.378*em) return q, em # --------------------------------------------------------------------- def gc(lat, lon=None): """ computes gravity relative to latitude inputs: lat : latitudes in deg lon : longitudes (optional) output: gc: gravity constant """ gamma = 9.7803267715 c1 = 0.0052790414 c2 = 0.0000232718 c3 = 0.0000001262 c4 = 0.0000000007 if lon is not None: lon_m, lat_m = np.meshgrid(lon, lat) else: lat_m = lat phi = lat_m*np.pi/180. xx = np.sin(phi) gc = (gamma*(1+c1*np.power(xx, 2)+c2*np.power(xx, 4)+c3*np.power(xx, 6) + c4*np.power(xx, 8))) return gc # --------------------------------------------------------------------- def visc_air(Ta): """ Computes the kinematic viscosity of dry air as a function of air temp. following Andreas (1989), CRREL Report 89-11. input: Ta : air temperature [Celsius] output visa : kinematic viscosity [m^2/s] """ Ta = np.asarray(Ta) if (np.nanmin(Ta) > 200): # if Ta in Kelvin convert to Celsius Ta = Ta-273.16 visa = 1.326e-5 * (1 + 6.542e-3*Ta + 8.301e-6*Ta**2 - 4.84e-9*Ta**3) return visa