import numpy as np import logging from flux_subs import (kappa, CtoK, get_heights, get_init, get_skin, get_gust, get_L, get_hum, get_strs, psim_calc, psit_calc, cdn_calc, cd_calc, ctcq_calc, ctcqn_calc) def AirSeaFluxCode(spd, T, SST, lat=None, hum=None, P=None, hin=18, hout=10, Rl=None, Rs=None, cskin=None, gust=None, meth="S80", qmeth="Buck2", tol=None, n=10, out=0, L=None): """ Calculates momentum and heat fluxes using different parameterizations Parameters ---------- spd : float relative wind speed in m/s (is assumed as magnitude difference between wind and surface current vectors) T : float air temperature in K (will convert if < 200) SST : float sea surface temperature in K (will convert if < 200) lat : float latitude (deg), default 45deg hum : float humidity input switch 2x1 [x, values] default is relative humidity x='rh' : relative humidity in % x='q' : specific humidity (g/kg) x='Td' : dew point temperature (K) P : float air pressure (hPa), default 1013hPa hin : float sensor heights in m (array 3x1 or 3xn), default 18m hout : float output height, default is 10m Rl : float downward longwave radiation (W/m^2) Rs : float downward shortwave radiation (W/m^2) cskin : int 0 switch cool skin adjustment off, else 1 default is 1 gust : int 3x1 [x, beta, zi] x=1 to include the effect of gustiness, else 0 beta gustiness parameter, beta=1 for UA, beta=1.2 for COARE zi PBL height (m) 600 for COARE, 1000 for UA and ERA5, 800 default default for COARE [1, 1.2, 600] default for UA, ERA5 [1, 1, 1000] default else [1, 1.2, 800] meth : str "S80","S88","LP82","YT96","UA","LY04","C30","C35","C40","ERA5" qmeth : str is the saturation evaporation method to use amongst "HylandWexler","Hardy","Preining","Wexler","GoffGratch","CIMO", "MagnusTetens","Buck","Buck2","WMO","WMO2000","Sonntag","Bolton", "IAPWS","MurphyKoop"] default is Buck2 tol : float 4x1 or 7x1 [option, lim1-3 or lim1-6] option : 'flux' to set tolerance limits for fluxes only lim1-3 option : 'ref' to set tolerance limits for height adjustment lim-1-3 option : 'all' to set tolerance limits for both fluxes and height adjustment lim1-6 ['all', 0.01, 0.01, 5e-05, 0.01, 1, 1] default is tol=['flux', 0.01, 1, 1] n : int number of iterations (defautl = 10) out : int set 0 to set points that have not converged to missing (default) set 1 to keep points L : int Monin-Obukhov length definition options 0 : default for S80, S88, LP82, YT96 and LY04 1 : following UA (Zeng et al., 1998), default for UA 2 : following ERA5 (IFS Documentation cy46r1), default for ERA5 3 : COARE3.5 (Edson et al., 2013), default for C30, C35 and C40 Returns ------- res : array that contains 1. momentum flux (W/m^2) 2. sensible heat (W/m^2) 3. latent heat (W/m^2) 4. Monin-Obhukov length (mb) 5. drag coefficient (cd) 6. neutral drag coefficient (cdn) 7. heat exhange coefficient (ct) 8. neutral heat exhange coefficient (ctn) 9. moisture exhange coefficient (cq) 10. neutral moisture exhange coefficient (cqn) 11. star virtual temperature (tsrv) 12. star temperature (tsr) 13. star humidity (qsr) 14. star velocity (usr) 15. momentum stability function (psim) 16. heat stability function (psit) 17. moisture stability function (psiq) 18. 10m neutral velocity (u10n) 19. 10m neutral temperature (t10n) 20. 10m neutral virtual temperature (tv10n) 21. 10m neutral specific humidity (q10n) 22. surface roughness length (zo) 23. heat roughness length (zot) 24. moisture roughness length (zoq) 25. velocity at reference height (uref) 26. temperature at reference height (tref) 27. specific humidity at reference height (qref) 28. number of iterations until convergence ind : int the indices in the matrix for the points that did not converge after the maximum number of iterations The code is based on bform.f and flux_calc.R modified by S. Biri """ logging.basicConfig(filename='flux_calc.log', format='%(asctime)s %(message)s',level=logging.INFO) lat, P, Rl, Rs, cskin, gust, tol, L = get_init(spd, T, SST, lat, P, Rl, Rs, cskin, gust, L, tol, meth, qmeth) ref_ht, tlapse = 10, 0.0098 # reference height, lapse rate h_in = get_heights(hin, len(spd)) # heights of input measurements/fields h_out = get_heights(hout, 1) # desired height of output variables logging.info('method %s, inputs: lat: %s | P: %s | Rl: %s |' ' Rs: %s | gust: %s | cskin: %s | L : %s', meth, np.nanmedian(lat), np.nanmedian(P), np.nanmedian(Rl), np.nanmedian(Rs), gust, cskin, L) #### th = np.where(T < 200, (np.copy(T)+CtoK) * np.power(1000/P,287.1/1004.67), np.copy(T)*np.power(1000/P,287.1/1004.67)) # potential T Ta = np.where(T < 200, np.copy(T)+CtoK+tlapse*h_in[1], np.copy(T)+tlapse*h_in[1]) # convert to Kelvin if needed sst = np.where(SST < 200, np.copy(SST)+CtoK, np.copy(SST)) qair, qsea = get_hum(hum, T, sst, P, qmeth) logging.info('method %s and q method %s | qsea:%s, qair:%s', meth, qmeth, np.nanmedian(qsea), np.nanmedian(qair)) if (np.all(np.isnan(qsea)) or np.all(np.isnan(qair))): print("qsea and qair cannot be nan") # first guesses dt = Ta - sst dq = qair - qsea t10n, q10n = np.copy(Ta), np.copy(qair) tv10n = t10n*(1 + 0.61*q10n) # Zeng et al. 1998 tv=th*(1.+0.61*qair) # virtual potential T dtv=dt*(1.+0.61*qair)+0.61*th*dq # ------------ rho = P*100/(287.1*tv10n) lv = (2.501-0.00237*(sst-CtoK))*1e6 cp = 1004.67*(1 + 0.00084*qsea) u10n = np.copy(spd) monob = -100*np.ones(spd.shape) cdn = cdn_calc(u10n, Ta, None, lat, meth) ctn, ct, cqn, cq = (np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan) psim, psit, psiq = (np.zeros(spd.shape), np.zeros(spd.shape), np.zeros(spd.shape)) cd = cd_calc(cdn, h_in[0], ref_ht, psim) tsr, tsrv = np.zeros(spd.shape), np.zeros(spd.shape) qsr = np.zeros(spd.shape) # cskin parameters tkt = 0.001*np.ones(T.shape) Rnl = 0.97*(5.67e-8*np.power(sst-0.3*cskin+CtoK, 4)-Rl) dter = np.ones(T.shape)*0.3 dqer = dter*0.622*lv*qsea/(287.1*np.power(sst, 2)) if (gust[0] == 1 and meth == "UA"): wind = np.where(dtv >= 0, np.where(spd > 0.1, spd, 0.1), np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2))) elif (gust[0] == 1): wind = np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2)) elif (gust[0] == 0): wind = np.copy(spd) usr = np.sqrt(cd*np.power(wind, 2)) zo = 0.0001*np.ones(spd.shape) zot, zoq = 0.0001*np.ones(spd.shape), 0.0001*np.ones(spd.shape) monob = -100*np.ones(spd.shape) # Monin-Obukhov length tsr = (dt+dter*cskin)*kappa/(np.log(h_in[1]/zot) - psit_calc(h_in[1]/monob, meth)) qsr = (dq+dqer*cskin)*kappa/(np.log(h_in[2]/zoq) - psit_calc(h_in[2]/monob, meth)) it, ind = 0, np.where(spd > 0) ii, itera = True, np.zeros(spd.shape)*np.nan tau = 0.05*np.ones(spd.shape) sensible = 5*np.ones(spd.shape) latent = 65*np.ones(spd.shape) while np.any(ii): it += 1 if it > n: break if (tol[0] == 'flux'): old = np.array([np.copy(tau), np.copy(sensible), np.copy(latent)]) elif (tol[0] == 'ref'): old = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n)]) elif (tol[0] == 'all'): old = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n), np.copy(tau), np.copy(sensible), np.copy(latent)]) cdn[ind] = cdn_calc(u10n[ind], Ta[ind], None, lat[ind], meth) if (np.all(np.isnan(cdn))): break logging.info('break %s at iteration %s cdn<0', meth, it) zo[ind] = ref_ht/np.exp(kappa/np.sqrt(cdn[ind])) psim[ind] = psim_calc(h_in[0, ind]/monob[ind], meth) cd[ind] = cd_calc(cdn[ind], h_in[0, ind], ref_ht, psim[ind]) ctn[ind], cqn[ind] = ctcqn_calc(h_in[1, ind]/monob[ind], cdn[ind], u10n[ind], zo[ind], Ta[ind], meth) zot[ind] = ref_ht/(np.exp(np.power(kappa, 2) / (ctn[ind]*np.log(ref_ht/zo[ind])))) zoq[ind] = ref_ht/(np.exp(np.power(kappa, 2) / (cqn[ind]*np.log(ref_ht/zo[ind])))) psit[ind] = psit_calc(h_in[1, ind]/monob[ind], meth) psiq[ind] = psit_calc(h_in[2, ind]/monob[ind], meth) ct[ind], cq[ind] = ctcq_calc(cdn[ind], cd[ind], ctn[ind], cqn[ind], h_in[1, ind], h_in[2, ind], ref_ht, psit[ind], psiq[ind]) usr[ind], tsr[ind], qsr[ind] = get_strs(h_in[:, ind], monob[ind], wind[ind], zo[ind], zot[ind], zoq[ind], dt[ind], dq[ind], dter[ind], dqer[ind], ct[ind], cq[ind], cskin, meth) if (cskin == 1): dter[ind], dqer[ind], tkt[ind] = get_skin(sst[ind], qsea[ind], rho[ind], Rl[ind], Rs[ind], Rnl[ind], cp[ind], lv[ind], np.copy(tkt[ind]), usr[ind], tsr[ind], qsr[ind], lat[ind]) else: dter[ind] = np.zeros(sst[ind].shape) dqer[ind] = np.zeros(sst[ind].shape) tkt[ind] = 0.001*np.ones(T[ind].shape) logging.info('method %s | dter = %s | dqer = %s | tkt = %s | Rnl = %s ' '| usr = %s | tsr = %s | qsr = %s', meth, np.nanmedian(dter), np.nanmedian(dqer), np.nanmedian(tkt), np.nanmedian(Rnl), np.nanmedian(usr), np.nanmedian(tsr), np.nanmedian(qsr)) Rnl[ind] = 0.97*(5.67e-8*np.power(sst[ind]-CtoK - dter[ind]*cskin+CtoK, 4)-Rl[ind]) t10n[ind] = (Ta[ind] - tsr[ind]/kappa*(np.log(h_in[1, ind]/ref_ht)-psit[ind])) q10n[ind] = (qair[ind] - qsr[ind]/kappa*(np.log(h_in[2, ind]/ref_ht)-psiq[ind])) tv10n[ind] = t10n[ind]*(1+0.61*q10n[ind]) tsrv[ind], monob[ind] = get_L(L, lat[ind], usr[ind], tsr[ind], qsr[ind], t10n[ind], tv10n[ind], qair[ind], h_in[:, ind], T[ind], Ta[ind], th[ind], tv[ind], sst[ind], dt[ind], dq[ind], wind[ind], np.copy(monob[ind]), meth) psim[ind] = psim_calc(h_in[0, ind]/monob[ind], meth) psit[ind] = psit_calc(h_in[1, ind]/monob[ind], meth) psiq[ind] = psit_calc(h_in[2, ind]/monob[ind], meth) if (gust[0] == 1 and meth == "UA"): wind[ind] = np.where(dtv[ind] >= 0, np.where(spd[ind] > 0.1, spd[ind], 0.1), np.sqrt(np.power(np.copy(spd[ind]), 2) + np.power(get_gust(gust[1], tv[ind], usr[ind], tsrv[ind], gust[2], lat[ind]), 2))) # Zeng et al. 1998 (20) elif (gust[0] == 1 and (meth == "C30" or meth == "C35" or meth == "C40")): wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) + np.power(get_gust(gust[1], Ta[ind], usr[ind], tsrv[ind], gust[2], lat[ind]), 2)) elif (gust[0] == 1): wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) + np.power(get_gust(gust[1], Ta[ind], usr[ind], tsrv[ind], gust[2], lat[ind]), 2)) elif (gust[0] == 0): wind[ind] = np.copy(spd[ind]) u10n[ind] = wind[ind]-usr[ind]/kappa*(np.log(h_in[0, ind]/10) - psim[ind]) u10n = np.where(u10n < 0, np.nan, u10n) itera[ind] = np.ones(1)*it sensible = -rho*cp*usr*tsr latent = -rho*lv*usr*qsr if (gust[0] == 1): tau = rho*np.power(usr, 2)*(spd/wind) elif (gust[0] == 0): tau = rho*np.power(usr, 2) if (tol[0] == 'flux'): new = np.array([np.copy(tau), np.copy(sensible), np.copy(latent)]) elif (tol[0] == 'ref'): new = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n)]) elif (tol[0] == 'all'): new = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n), np.copy(tau), np.copy(sensible), np.copy(latent)]) d = np.fabs(new-old) if (tol[0] == 'flux'): ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) + (d[2, :] > tol[3])) elif (tol[0] == 'ref'): ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) + (d[2, :] > tol[3])) elif (tol[0] == 'all'): ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) + (d[2, :] > tol[3])+(d[3, :] > tol[4]) + (d[4, :] > tol[5])+(d[5, :] > tol[6])) if (ind[0].size == 0): ii = False else: ii = True itera = np.where(itera > n, -1, itera) logging.info('method %s | # of iterations:%s', meth, it) logging.info('method %s | # of points that did not converge :%s', meth, ind[0].size) # calculate output parameters rho = (0.34838*P)/(tv10n) t10n = t10n-(273.16+tlapse*ref_ht) zo = ref_ht/np.exp(kappa/cdn**0.5) zot = ref_ht/(np.exp(kappa**2/(ctn*np.log(ref_ht/zo)))) zoq = ref_ht/(np.exp(kappa**2/(cqn*np.log(ref_ht/zo)))) uref = (spd-usr/kappa*(np.log(h_in[0]/h_out[0])-psim + psim_calc(h_out[0]/monob, meth))) tref = (Ta-tsr/kappa*(np.log(h_in[1]/h_out[1])-psit + psit_calc(h_out[0]/monob, meth))) tref = tref-(273.16+tlapse*h_out[1]) qref = (qair-qsr/kappa*(np.log(h_in[2]/h_out[2]) - psit+psit_calc(h_out[2]/monob, meth))) res = np.zeros((35, len(spd))) res[0][:] = tau res[1][:] = sensible res[2][:] = latent res[3][:] = monob res[4][:] = cd res[5][:] = cdn res[6][:] = ct res[7][:] = ctn res[8][:] = cq res[9][:] = cqn res[10][:] = tsrv res[11][:] = tsr res[12][:] = qsr res[13][:] = usr res[14][:] = psim res[15][:] = psit res[16][:] = psiq res[17][:] = u10n res[18][:] = t10n res[19][:] = tv10n res[20][:] = q10n res[21][:] = zo res[22][:] = zot res[23][:] = zoq res[24][:] = uref res[25][:] = tref res[26][:] = qref res[27][:] = itera res[28][:] = dter res[29][:] = dqer res[30][:] = qair res[31][:] = qsea res[32][:] = Rl res[33][:] = Rs res[34][:] = Rnl if (out == 0): res[:, ind] = np.nan # set missing values where data have non acceptable values res = np.where(spd < 0, np.nan, res) return res