#!/usr/bin/env python3.7 # -*- coding: utf-8 -*- """ Created on Fri May 01 2020 @author: thopri example usage: (in python console) from pynemo.tides import nemo_tide_test as tt tt.main() all parameters have defaults applied if not supplied: location of bdy file - 'inputs/namelist_cmems.bdy' amplitude threshold - 0.25 m phase threshold - 10.00 degrees model resolution - 1/16 degree model - 'fes' So for FES the only model currently supported only the location of the BDY file and thresholds (if different from defaults) need to be provided. For TPXO this would vary based on the resolution e.g. TPXO7.2 is 1/4 and 'tpxo' The script generates a excel spreadsheet that contains the locations and amplitudes and phases for all HC's defined in the bdy file that exceed the default or defined the thresholds passed to the main function. File locations e.g. model reference location etc are all taken from bdy file that is passed to the main function To do this the script compiles a list of PyNEMO boundary amplitudes and phases and lat/lon's, finds the closest value in the reference model (currently only FES is supported), and then compares them. If the absolute difference is greater than defined threshold then the location and parameter (either Amp or Phase) is returned within a Pandas Dataframe which is then written to a spreadsheet. Notes: The script checks the Amplitude and Phase independently, so lat/lons for each are also returned. Each HC is saved to a separate sheet in the spreadsheet. The name of the spreadsheet contains meta data showing thresholds and reference model used. Units for threshold are meters and degrees. """ from netCDF4 import Dataset import numpy as np import logging import time import pandas as pd from pynemo import nemo_bdy_setup as setup # log to PyNEMO log file logger = logging.getLogger(__name__) logging.basicConfig(filename='nrct.log', level=logging.INFO) # TODO: add TPXO read and subset functionality currently only uses FES as "truth" def main(bdy_file='inputs/namelist_cmems.bdy',amplitude_threshold = 0.25,phase_threshold=10.00,model_res=1/16,model='fes'): logger.info('============================================') logger.info('Start Tide Test Logging: ' + time.asctime()) logger.info('============================================') # get settings dict based on bdy file Setup = setup.Setup(bdy_file) # default settings file settings = Setup.settings constituents = settings['clname'] # TODO maybe define Z and/or UV in bdy file? at the moment Z, U and Vs are generated with no option for Z only. grids = ['Z','U','V'] if model == 'fes': logger.info('using FES as reference.......') # open writer object to write pandas dataframes to spreadsheet writer = pd.ExcelWriter(settings['dst_dir'] + 'exceed_values_amp_thres-'+str(amplitude_threshold)+'_phase_thres-'+str(phase_threshold)+'_reference_model-'+str(model)+'.xlsx', engine='xlsxwriter') for key in constituents: for j in range(len(grids)): out_fname = settings['dst_dir']+settings['fn']+'_bdytide_'+constituents[key].strip("',/\n")+'_grd_'+grids[j]+'.nc' logger.info('processing output file '+out_fname) fes_fname = settings['tide_fes']+constituents[key].strip("',/\n")+'_'+grids[j]+'.nc' # read in FES data (whole globe) fes = read_fes(fes_fname, grids[j]) grid = grids[j].lower() # extract PyNEMO data from output files (generate list of lats,lons etc) pynemo_out = extract_PyNEMO_output(out_fname, grid) # subset FES to match PyNEMO list of lat lons subset_fes = subset_reference(pynemo_out, fes) # compare the two lists (or dicts really) error_log = compare_tides(pynemo_out, subset_fes, amplitude_threshold, phase_threshold, model_res) # return differences above threshold as a Pandas Dataframe and name using HC and Grid error_log.name = constituents[key].strip("',/\n") + grids[j] # if the dataframe is empty (no exceedances) then discard dataframe and log the good news if error_log.empty == True: logger.info('output file does not exceed threshold when compared with reference model..... thats good!') # if dataframe has values then these exceed the threshold, log and save to excel spreadsheet using dataset # name e.g. M2Z (based on HC and grid) as name for the sheet if error_log.empty == False: logger.warning('Exceedance in thesholds detected, check spreadsheet in dst_dir') error_log.to_excel(writer,sheet_name=error_log.name) # close writer object and save excel spreadsheet writer.save() # code runs here if TPXO is requested as reference this hasn't been written yet so raises exception elif model == 'tpxo': logger.info('using TPXO as reference.......') logger.exception('not set up to use TPXO yet...... exiting') raise Exception('Not setup for TPXO use FES instead?') # everything else goes here which shouldn't happen so is raised as an exception else: logger.exception('Tide reference model not recognised.... exiting') raise Exception('Invalid tide referece model name provided') return 0 # find nearest value in array used for finding subset of Lat and Lon def find_nearest(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx # extract PyNEMO output from netcdf file, convert HcosG and HsinG to Amp and Phase # and extract lons and lats from I and J coords. return a dict def extract_PyNEMO_output(out_fname,grid): tide_out = Dataset(out_fname) nav_lat = tide_out.variables['nav_lat'][:] nav_lon = tide_out.variables['nav_lon'][:] nbidta = tide_out.variables['nbidta'][:] nbjdta = tide_out.variables['nbjdta'][:] cosine = np.array(tide_out.variables[grid+'1'][:]) sine = np.array(tide_out.variables[grid+'2'][:]) amp = np.hypot(sine,cosine) phase = np.arctan2(sine[0,:],cosine[0,:]) phase = np.degrees(phase) lat = np.array(nav_lat[nbjdta, nbidta]) lon = np.array(nav_lon[nbjdta, nbidta]) pynemo_out = {'lat':lat,'lon':lon,'amp':amp,'phase':phase} return pynemo_out # read FES netcdf file, convert lon to -180 to 180, rather than 0-360 it also converts amplitude from CM to M # return a dict def read_fes(fes_fname,grid): fes_tide = Dataset(fes_fname) if grid == 'Z': fes_amp = np.array(fes_tide.variables['amplitude'][:]) fes_amp = fes_amp / 100 fes_phase = np.array(fes_tide.variables['phase'][:]) fes_phase[fes_phase > 180.0] = fes_phase[fes_phase > 180.0] - 360.0 if grid != 'Z': fes_amp = np.array(fes_tide.variables[grid+'a'][:]) fes_phase = np.array(fes_tide.variables[grid+'g'][:]) fes_phase[fes_phase > 180.0] = fes_phase[fes_phase > 180.0] - 360.0 fes_lat = fes_tide.variables['lat'][:] fes_lon = fes_tide.variables['lon'][:] # change to -180 to 180 lonitude convention fes_lon[fes_lon > 180.0] = fes_lon[fes_lon > 180.0] - 360.0 fes_dict = {'lat':fes_lat,'lon':fes_lon,'amp':fes_amp,'phase':fes_phase} return fes_dict # subset FES dict from read_FES, this uses find_nearest to find nearest FES point using PyNEMO dict from extract_PyNEMO # It also converts FES amplitude from cm to m. def subset_reference(pynemo_out, reference): idx_lat = np.zeros(np.shape(pynemo_out['lat'])) for i in range(np.shape(pynemo_out['lat'])[1]): idx_lat[0, i] = find_nearest(reference['lat'], pynemo_out['lat'][0, i]) idx_lat = idx_lat.astype(np.int64) idx_lon = np.zeros(np.shape(pynemo_out['lon'])) for i in range(np.shape(pynemo_out['lon'])[1]): idx_lon[0, i] = find_nearest(reference['lon'], pynemo_out['lon'][0, i]) idx_lon = idx_lon.astype(np.int64) amp_sub = reference['amp'][idx_lat, idx_lon] phase_sub = reference['phase'][idx_lat, idx_lon] lat_sub = reference['lat'][idx_lat] lon_sub = reference['lon'][idx_lon] subset = {'lat':lat_sub,'lon':lon_sub,'amp':amp_sub,'phase':phase_sub} return subset # takes pynemo extract dict, subset fes dict, and the thresholds and model res passed to main function. # returns a Pandas Dataframe with any PyNEMO values that exceed the nearest FES point by defined threshold # It also checks lats and lons are within the model reference resolution # i.e. ensure closest model reference point is used. def compare_tides(pynemo_out,subset,amp_thres,phase_thres,model_res): # compare lat and lons diff_lat = np.abs(pynemo_out['lat']-subset['lat']) diff_lon = np.abs(pynemo_out['lon'] - subset['lon']) exceed_lat = diff_lat > model_res exceed_lon = diff_lon > model_res exceed_sum = np.sum(exceed_lat+exceed_lon) if exceed_sum > 0: raise Exception('Dont Panic: Lat and/or Lon further away from model point than model resolution') # compare amp abs_amp = np.abs(pynemo_out['amp']-subset['amp']) abs_amp_thres = abs_amp > amp_thres err_amp = pynemo_out['amp'][abs_amp_thres].tolist() err_amp_lats = pynemo_out['lat'][abs_amp_thres].tolist() err_amp_lons = pynemo_out['lon'][abs_amp_thres].tolist() err_ref_amp = subset['amp'][abs_amp_thres].tolist() err_ref_lats_amp = subset['lat'][abs_amp_thres].tolist() err_ref_lons_amp = subset['lon'][abs_amp_thres].tolist() # compare phase abs_ph = np.abs(pynemo_out['phase']-subset['phase']) abs_ph_thres = abs_ph > phase_thres err_pha = pynemo_out['phase'][abs_ph_thres[0,:]].tolist() err_pha_lats = pynemo_out['lat'][abs_ph_thres].tolist() err_pha_lons = pynemo_out['lon'][abs_ph_thres].tolist() err_ref_pha = subset['phase'][abs_ph_thres].tolist() err_ref_lats_pha = subset['lat'][abs_ph_thres].tolist() err_ref_lons_pha = subset['lon'][abs_ph_thres].tolist() lerr_pha, lerr_amp = len(err_pha), len(err_amp) max_len = max(lerr_pha, lerr_amp) if not max_len == lerr_pha: err_pha.extend([''] * (max_len - lerr_pha)) err_pha_lats.extend([''] * (max_len - lerr_pha)) err_pha_lons.extend([''] * (max_len - lerr_pha)) err_ref_pha.extend([''] * (max_len - lerr_pha)) err_ref_lats_pha.extend([''] * (max_len - lerr_pha)) err_ref_lons_pha.extend([''] * (max_len - lerr_pha)) if not max_len == lerr_amp: err_amp.extend([''] * (max_len - lerr_amp)) err_amp_lats.extend([''] * (max_len - lerr_amp)) err_amp_lons.extend([''] * (max_len - lerr_amp)) err_ref_amp.extend([''] * (max_len - lerr_amp)) err_ref_lats_amp.extend([''] * (max_len - lerr_amp)) err_ref_lons_amp.extend([''] * (max_len - lerr_amp)) err_log = pd.DataFrame({'amp_lat':err_amp_lats, 'amp_lon':err_amp_lons, 'amp':err_amp, 'ref_amp': err_ref_amp, 'ref_amp_lats': err_ref_lats_amp, 'ref_amp_lons': err_ref_lons_amp, 'phase_lat':err_pha_lats, 'phase_lon':err_pha_lons, 'phase':err_pha, 'ref_phase':err_ref_pha, 'ref_phase_lats':err_ref_lats_pha, 'ref_phase_lons':err_ref_lons_pha }) return err_log if __name__ == '__main__': main()