AirSeaFluxCode.py 20.9 KB
Newer Older
sbiri's avatar
sbiri committed
1 2
import numpy as np
import logging
sbiri's avatar
sbiri committed
3
from get_init import get_init
4
from hum_subs import (get_hum, gamma_moist)
sbiri's avatar
sbiri committed
5
from util_subs import (kappa, CtoK, get_heights)
6 7
from flux_subs import (cs_C35, cs_Beljaars, cs_ecmwf, wl_ecmwf,
                       get_gust, get_L, get_strs, psim_calc,
sbiri's avatar
sbiri committed
8
                       psit_calc, cdn_calc, cd_calc, ctcq_calc, ctcqn_calc)
sbiri's avatar
sbiri committed
9 10


11 12 13 14 15 16 17

def AirSeaFluxCode(spd, T, SST, lat=None, hum=None, P=None, hin=18, hout=10,
                   Rl=None, Rs=None, cskin=None, skin="C35", wl=0, gust=None,
                   meth="S80", qmeth="Buck2", tol=None, n=10, out=0, L=None):
    """
    Calculates turbulent surface fluxes using different parameterizations
    Calculates height adjusted values for spd, T, q
sbiri's avatar
sbiri committed
18 19 20 21 22 23 24 25 26 27 28

    Parameters
    ----------
        spd : float
            relative wind speed in m/s (is assumed as magnitude difference
            between wind and surface current vectors)
        T : float
            air temperature in K (will convert if < 200)
        SST : float
            sea surface temperature in K (will convert if < 200)
        lat : float
29 30 31
            latitude (deg), default 45deg
        hum : float
            humidity input switch 2x1 [x, values] default is relative humidity
32 33 34
            x='rh' : relative humidity in %
            x='q' : specific humidity (g/kg)
            x='Td' : dew point temperature (K)
sbiri's avatar
sbiri committed
35
        P : float
36
            air pressure (hPa), default 1013hPa
sbiri's avatar
sbiri committed
37
        hin : float
38
            sensor heights in m (array 3x1 or 3xn), default 18m
sbiri's avatar
sbiri committed
39 40 41 42 43 44
        hout : float
            output height, default is 10m
        Rl : float
            downward longwave radiation (W/m^2)
        Rs : float
            downward shortwave radiation (W/m^2)
sbiri's avatar
sbiri committed
45
        cskin : int
46 47
            0 switch cool skin adjustment off, else 1
            default is 1
48 49 50 51
        skin : str
            cool skin method option "C35", "ecmwf" or "Beljaars"
        wl : int
            warm layer correction default is 0, to switch on set to 1
52
        gust : int
53 54
            3x1 [x, beta, zi] x=1 to include the effect of gustiness, else 0
            beta gustiness parameter, beta=1 for UA, beta=1.2 for COARE
55
            zi PBL height (m) 600 for COARE, 1000 for UA and ecmwf, 800 default
56
            default for COARE [1, 1.2, 600]
57
            default for UA, ecmwf [1, 1, 1000]
58 59
            default else [1, 1.2, 800]
        meth : str
60 61
            "S80", "S88", "LP82", "YT96", "UA", "LY04", "C30", "C35", "C40",
            "ecmwf", "Beljaars"
62 63
        qmeth : str
            is the saturation evaporation method to use amongst
64 65
            "HylandWexler","Hardy","Preining","Wexler","GoffGratch","WMO",
            "MagnusTetens","Buck","Buck2","WMO2018","Sonntag","Bolton",
66 67 68 69 70 71 72
            "IAPWS","MurphyKoop"]
            default is Buck2
        tol : float
           4x1 or 7x1 [option, lim1-3 or lim1-6]
           option : 'flux' to set tolerance limits for fluxes only lim1-3
           option : 'ref' to set tolerance limits for height adjustment lim-1-3
           option : 'all' to set tolerance limits for both fluxes and height
73 74
                    adjustment lim1-6 ['all', 0.01, 0.01, 5e-05, 1e-3, 0.1, 0.1]
           default is tol=['flux', 1e-3, 0.1, 0.1]
sbiri's avatar
sbiri committed
75
        n : int
76 77 78 79
            number of iterations (defautl = 10)
        out : int
            set 0 to set points that have not converged to missing (default)
            set 1 to keep points
80
        L : str
sbiri's avatar
sbiri committed
81
           Monin-Obukhov length definition options
82
           "S80"  : default for S80, S88, LP82, YT96 and LY04
83 84
           "ecmwf" : following ecmwf (IFS Documentation cy46r1), default for
           ecmwf
sbiri's avatar
sbiri committed
85 86 87
    Returns
    -------
        res : array that contains
88
                       1. momentum flux (N/m^2)
sbiri's avatar
sbiri committed
89 90
                       2. sensible heat (W/m^2)
                       3. latent heat (W/m^2)
91
                       4. Monin-Obhukov length (mb)
sbiri's avatar
sbiri committed
92 93 94 95 96 97 98 99 100 101 102
                       5. drag coefficient (cd)
                       6. neutral drag coefficient (cdn)
                       7. heat exhange coefficient (ct)
                       8. neutral heat exhange coefficient (ctn)
                       9. moisture exhange coefficient (cq)
                       10. neutral moisture exhange coefficient (cqn)
                       11. star virtual temperature (tsrv)
                       12. star temperature (tsr)
                       13. star humidity (qsr)
                       14. star velocity (usr)
                       15. momentum stability function (psim)
103 104 105 106 107 108 109 110 111
                       16. heat stability function (psit)
                       17. moisture stability function (psiq)
                       18. 10m neutral velocity (u10n)
                       19. 10m neutral temperature (t10n)
                       20. 10m neutral virtual temperature (tv10n)
                       21. 10m neutral specific humidity (q10n)
                       22. surface roughness length (zo)
                       23. heat roughness length (zot)
                       24. moisture roughness length (zoq)
112 113 114
                       25. velocity at reference height (uref)
                       26. temperature at reference height (tref)
                       27. specific humidity at reference height (qref)
115
                       28. number of iterations until convergence
116 117
                       29. cool-skin temperature depression (dter)
                       30. cool-skin humidity depression (dqer)
118 119 120 121 122 123
                       31. warm layer correction (dtwl)
                       32. specific humidity of air (qair)
                       33. specific humidity at sea surface (qsea)
                       34. downward longwave radiation (Rl)
                       35. downward shortwave radiation (Rs)
                       36. downward net longwave radiation (Rnl)
124

125
    2021 / Author S. Biri
sbiri's avatar
sbiri committed
126 127 128
    """
    logging.basicConfig(filename='flux_calc.log',
                        format='%(asctime)s %(message)s',level=logging.INFO)
129 130
    logging.captureWarnings(True)
    #  check input values and set defaults where appropriate
131 132 133 134 135
    lat, P, Rl, Rs, cskin, skin, wl, gust, tol, L = get_init(spd, T, SST, lat,
                                                              P, Rl, Rs, cskin,
                                                              skin, wl, gust, L,
                                                              tol, meth, qmeth)
    ref_ht = 10        # reference height
136 137
    h_in = get_heights(hin, len(spd))  # heights of input measurements/fields
    h_out = get_heights(hout, 1)       # desired height of output variables
138
    logging.info('method %s, inputs: lat: %s | P: %s | Rl: %s |'
139
                 ' Rs: %s | gust: %s | cskin: %s | L : %s', meth,
140
                 np.nanmedian(lat), np.nanmedian(P), np.nanmedian(Rl),
141
                 np.nanmedian(Rs), gust, cskin, L)
142
    #  set up/calculate temperatures and specific humidities
143
    th = np.where(T < 200, (np.copy(T)+CtoK) *
sbiri's avatar
sbiri committed
144 145
                  np.power(1000/P,287.1/1004.67),
                  np.copy(T)*np.power(1000/P,287.1/1004.67))  # potential T
146
    sst = np.where(SST < 200, np.copy(SST)+CtoK, np.copy(SST))
147
    qair, qsea = get_hum(hum, T, sst, P, qmeth)
148 149 150 151
    #lapse rate
    tlapse = gamma_moist(SST, T, qair/1000)
    Ta = np.where(T < 200, np.copy(T)+CtoK+tlapse*h_in[1],
                  np.copy(T)+tlapse*h_in[1])  # convert to Kelvin if needed
152 153
    logging.info('method %s and q method %s | qsea:%s, qair:%s', meth, qmeth,
                  np.nanmedian(qsea), np.nanmedian(qair))
sbiri's avatar
sbiri committed
154 155
    if (np.all(np.isnan(qsea)) or np.all(np.isnan(qair))):
        print("qsea and qair cannot be nan")
156

sbiri's avatar
sbiri committed
157 158
    dt = Ta - sst
    dq = qair - qsea
159
    #  first guesses
sbiri's avatar
sbiri committed
160
    t10n, q10n = np.copy(Ta), np.copy(qair)
161
    tv10n = t10n*(1+0.61*q10n)
sbiri's avatar
sbiri committed
162 163 164 165
    #  Zeng et al. 1998
    tv=th*(1.+0.61*qair)   # virtual potential T
    dtv=dt*(1.+0.61*qair)+0.61*th*dq
    # ------------
166
    rho = P*100/(287.1*tv10n)
167
    lv = (2.501-0.00237*(sst-CtoK))*1e6
sbiri's avatar
sbiri committed
168 169 170
    cp = 1004.67*(1 + 0.00084*qsea)
    u10n = np.copy(spd)
    cdn = cdn_calc(u10n, Ta, None, lat, meth)
171 172 173 174 175 176 177
    ctn, ct, cqn, cq = (np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan,
                        np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan)
    psim, psit, psiq = (np.zeros(spd.shape), np.zeros(spd.shape),
                        np.zeros(spd.shape))
    cd = cd_calc(cdn, h_in[0], ref_ht, psim)
    tsr, tsrv = np.zeros(spd.shape), np.zeros(spd.shape)
    qsr = np.zeros(spd.shape)
sbiri's avatar
sbiri committed
178
    # cskin parameters
179
    tkt = 0.001*np.ones(T.shape)
sbiri's avatar
sbiri committed
180
    dter = np.ones(T.shape)*0.3
181
    dqer = dter*0.622*lv*qsea/(287.1*np.power(sst, 2))
182 183 184 185
    Rnl = 0.97*(5.67e-8*np.power(sst-0.3*cskin, 4)-Rl)
    Qs = 0.945*Rs
    dtwl = np.ones(T.shape)*0.3
    skt = np.copy(sst)
186
    # gustiness adjustment
187
    if (gust[0] == 1 and meth == "UA"):
188 189
        wind = np.where(dtv >= 0, np.where(spd > 0.1, spd, 0.1),
                        np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2)))
190
    elif (gust[0] == 1):
191
        wind = np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2))
192
    elif (gust[0] == 0):
193
        wind = np.copy(spd)
194
    # stars and roughness lengths
195 196 197 198
    usr = np.sqrt(cd*np.power(wind, 2))
    zo = 0.0001*np.ones(spd.shape)
    zot, zoq = 0.0001*np.ones(spd.shape), 0.0001*np.ones(spd.shape)
    monob = -100*np.ones(spd.shape)  # Monin-Obukhov length
199 200
    tsr = (dt+dter*cskin-dtwl*wl)*kappa/(np.log(h_in[1]/zot) -
                                         psit_calc(h_in[1]/monob, meth))
sbiri's avatar
sbiri committed
201
    qsr = (dq+dqer*cskin)*kappa/(np.log(h_in[2]/zoq) -
202
                                 psit_calc(h_in[2]/monob, meth))
203
    # set-up to feed into iteration loop
204 205
    it, ind = 0, np.where(spd > 0)
    ii, itera = True, np.zeros(spd.shape)*np.nan
206 207 208
    tau = 0.05*np.ones(spd.shape)
    sensible = 5*np.ones(spd.shape)
    latent = 65*np.ones(spd.shape)
209
    #  iteration loop
sbiri's avatar
sbiri committed
210 211 212 213
    while np.any(ii):
        it += 1
        if it > n:
            break
214 215 216 217 218 219 220
        if (tol[0] == 'flux'):
            old = np.array([np.copy(tau), np.copy(sensible), np.copy(latent)])
        elif (tol[0] == 'ref'):
            old = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n)])
        elif (tol[0] == 'all'):
            old = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n),
                            np.copy(tau), np.copy(sensible), np.copy(latent)])
sbiri's avatar
sbiri committed
221 222
        cdn[ind] = cdn_calc(u10n[ind], Ta[ind], None, lat[ind], meth)
        if (np.all(np.isnan(cdn))):
223
            break
sbiri's avatar
sbiri committed
224 225
            logging.info('break %s at iteration %s cdn<0', meth, it)
        zo[ind] = ref_ht/np.exp(kappa/np.sqrt(cdn[ind]))
226 227 228
        psim[ind] = psim_calc(h_in[0, ind]/monob[ind], meth)
        cd[ind] = cd_calc(cdn[ind], h_in[0, ind], ref_ht, psim[ind])
        ctn[ind], cqn[ind] = ctcqn_calc(h_in[1, ind]/monob[ind], cdn[ind],
sbiri's avatar
sbiri committed
229
                                        u10n[ind], zo[ind], Ta[ind], meth)
230 231 232 233
        zot[ind] = ref_ht/(np.exp(np.power(kappa, 2) /
                           (ctn[ind]*np.log(ref_ht/zo[ind]))))
        zoq[ind] = ref_ht/(np.exp(np.power(kappa, 2) /
                           (cqn[ind]*np.log(ref_ht/zo[ind]))))
234 235
        psit[ind] = psit_calc(h_in[1, ind]/monob[ind], meth)
        psiq[ind] = psit_calc(h_in[2, ind]/monob[ind], meth)
sbiri's avatar
sbiri committed
236
        ct[ind], cq[ind] = ctcq_calc(cdn[ind], cd[ind], ctn[ind], cqn[ind],
237 238
                                      h_in[1, ind], h_in[2, ind], ref_ht,
                                      psit[ind], psiq[ind])
sbiri's avatar
sbiri committed
239 240 241
        usr[ind], tsr[ind], qsr[ind] = get_strs(h_in[:, ind], monob[ind],
                                                wind[ind], zo[ind], zot[ind],
                                                zoq[ind], dt[ind], dq[ind],
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
                                                dter[ind], dqer[ind], dtwl[ind],
                                                ct[ind], cq[ind], cskin, wl,
                                                meth)
        if ((cskin == 1) and (wl == 0)):
            if (skin == "C35"):
                dter[ind], dqer[ind], tkt[ind] = cs_C35(sst[ind], qsea[ind],
                                                        rho[ind], Rs[ind],
                                                        Rnl[ind],
                                                        cp[ind], lv[ind],
                                                        np.copy(tkt[ind]),
                                                        usr[ind], tsr[ind],
                                                        qsr[ind], lat[ind])
            elif (skin == "ecmwf"):
                dter[ind] = cs_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     sst[ind], lat[ind])
                dqer[ind] = (dter[ind]*0.622*lv[ind]*qsea[ind] /
                             (287.1*np.power(sst[ind], 2)))
            elif (skin == "Beljaars"):
                Qs[ind], dter[ind] = cs_Beljaars(rho[ind], Rs[ind], Rnl[ind],
                                                 cp[ind], lv[ind], usr[ind],
                                                 tsr[ind], qsr[ind], lat[ind],
                                                 np.copy(Qs[ind]))
                dqer = dter*0.622*lv*qsea/(287.1*np.power(sst, 2))
        elif ((cskin == 1) and (wl == 1)):
            if (skin == "C35"):
                dter[ind], dqer[ind], tkt[ind] = cs_C35(sst[ind], qsea[ind],
                                                        rho[ind], Rs[ind],
                                                        Rnl[ind],
                                                        cp[ind], lv[ind],
                                                        np.copy(tkt[ind]),
                                                        usr[ind], tsr[ind],
                                                        qsr[ind], lat[ind])
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
            elif (skin == "ecmwf"):
                dter[ind] = cs_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     sst[ind], lat[ind])
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
                dqer[ind] = (dter[ind]*0.622*lv[ind]*qsea[ind] /
                             (287.1*np.power(skt[ind], 2)))
            elif (skin == "Beljaars"):
                Qs[ind], dter[ind] = cs_Beljaars(rho[ind], Rs[ind], Rnl[ind],
                                                 cp[ind], lv[ind], usr[ind],
                                                 tsr[ind], qsr[ind], lat[ind],
                                                 np.copy(Qs[ind]))
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
                dqer = dter*0.622*lv*qsea/(287.1*np.power(skt, 2))
302 303 304
        else:
           dter[ind] = np.zeros(sst[ind].shape)
           dqer[ind] = np.zeros(sst[ind].shape)
305
           tkt[ind] = 0.001*np.ones(T[ind].shape)
sbiri's avatar
sbiri committed
306 307 308 309 310 311
        logging.info('method %s | dter = %s | dqer = %s | tkt = %s | Rnl = %s '
                     '| usr = %s | tsr = %s | qsr = %s', meth,
                     np.nanmedian(dter), np.nanmedian(dqer),
                     np.nanmedian(tkt), np.nanmedian(Rnl),
                     np.nanmedian(usr), np.nanmedian(tsr),
                     np.nanmedian(qsr))
312 313
        Rnl[ind] = 0.97*(5.67e-8*np.power(sst[ind] -
                          dter[ind]*cskin, 4)-Rl[ind])
314 315 316 317
        t10n[ind] = (Ta[ind] -
                     tsr[ind]/kappa*(np.log(h_in[1, ind]/ref_ht)-psit[ind]))
        q10n[ind] = (qair[ind] -
                     qsr[ind]/kappa*(np.log(h_in[2, ind]/ref_ht)-psiq[ind]))
sbiri's avatar
sbiri committed
318
        tv10n[ind] = t10n[ind]*(1+0.61*q10n[ind])
319
        tsrv[ind], monob[ind] = get_L(L, lat[ind], usr[ind], tsr[ind],
320 321 322 323
                                      qsr[ind], t10n[ind], h_in[:, ind],
                                      Ta[ind], sst[ind],
                                      qair[ind], qsea[ind], q10n[ind],
                                      wind[ind], np.copy(monob[ind]), meth)
324 325 326
        psim[ind] = psim_calc(h_in[0, ind]/monob[ind], meth)
        psit[ind] = psit_calc(h_in[1, ind]/monob[ind], meth)
        psiq[ind] = psit_calc(h_in[2, ind]/monob[ind], meth)
327
        if (gust[0] == 1 and meth == "UA"):
sbiri's avatar
sbiri committed
328
            wind[ind] = np.where(dtv[ind] >= 0, np.where(spd[ind] > 0.1,
329 330 331 332 333 334 335
                                  spd[ind], 0.1),
                                  np.sqrt(np.power(np.copy(spd[ind]), 2) +
                                  np.power(get_gust(gust[1], tv[ind], usr[ind],
                                  tsrv[ind], gust[2], lat[ind]), 2)))
                                  # Zeng et al. 1998 (20)
        elif (gust[0] == 1 and (meth == "C30" or meth == "C35" or
                                meth == "C40")):
sbiri's avatar
sbiri committed
336
            wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) +
337 338 339
                                np.power(get_gust(gust[1], Ta[ind], usr[ind],
                                tsrv[ind], gust[2], lat[ind]), 2))
        elif (gust[0] == 1):
340
            wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) +
341 342 343
                                np.power(get_gust(gust[1], Ta[ind], usr[ind],
                                tsrv[ind], gust[2], lat[ind]), 2))
        elif (gust[0] == 0):
344
            wind[ind] = np.copy(spd[ind])
345 346
        u10n[ind] = wind[ind]-usr[ind]/kappa*(np.log(h_in[0, ind]/10) -
                                              psim[ind])
sbiri's avatar
sbiri committed
347
        u10n = np.where(u10n < 0, np.nan, u10n)
sbiri's avatar
sbiri committed
348
        itera[ind] = np.ones(1)*it
349 350 351 352 353 354 355 356 357 358 359 360 361
        sensible = -rho*cp*usr*tsr
        latent = -rho*lv*usr*qsr
        if (gust[0] == 1):
            tau = rho*np.power(usr, 2)*(spd/wind)
        elif (gust[0] == 0):
            tau = rho*np.power(usr, 2)
        if (tol[0] == 'flux'):
            new = np.array([np.copy(tau), np.copy(sensible), np.copy(latent)])
        elif (tol[0] == 'ref'):
            new = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n)])
        elif (tol[0] == 'all'):
            new = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n),
                            np.copy(tau), np.copy(sensible), np.copy(latent)])
362
        d = np.abs(new-old)
363 364
        if (tol[0] == 'flux'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
365
                            (d[2, :] > tol[3]))
366 367
        elif (tol[0] == 'ref'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
368
                            (d[2, :] > tol[3]))
369 370
        elif (tol[0] == 'all'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
371 372
                            (d[2, :] > tol[3])+(d[3, :] > tol[4]) +
                            (d[4, :] > tol[5])+(d[5, :] > tol[6]))
373 374
        if (ind[0].size == 0):
            ii = False
sbiri's avatar
sbiri committed
375
        else:
376
            ii = True
377
    itera[ind] = -1
378
    # itera = np.where(itera > n, -1, itera)
379
    logging.info('method %s | # of iterations:%s', meth, it)
sbiri's avatar
sbiri committed
380
    logging.info('method %s | # of points that did not converge :%s', meth,
381
                  ind[0].size)
sbiri's avatar
sbiri committed
382
    # calculate output parameters
383
    rho = (0.34838*P)/(tv10n)
sbiri's avatar
sbiri committed
384
    t10n = t10n-(273.16+tlapse*ref_ht)
385 386 387
    zo = ref_ht/np.exp(kappa/cdn**0.5)
    zot = ref_ht/(np.exp(kappa**2/(ctn*np.log(ref_ht/zo))))
    zoq = ref_ht/(np.exp(kappa**2/(cqn*np.log(ref_ht/zo))))
388 389 390 391 392 393 394
    uref = (spd-usr/kappa*(np.log(h_in[0]/h_out[0])-psim +
            psim_calc(h_out[0]/monob, meth)))
    tref = (Ta-tsr/kappa*(np.log(h_in[1]/h_out[1])-psit +
            psit_calc(h_out[0]/monob, meth)))
    tref = tref-(273.16+tlapse*h_out[1])
    qref = (qair-qsr/kappa*(np.log(h_in[2]/h_out[2]) -
            psit+psit_calc(h_out[2]/monob, meth)))
395
    res = np.zeros((36, len(spd)))
sbiri's avatar
sbiri committed
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    res[0][:] = tau
    res[1][:] = sensible
    res[2][:] = latent
    res[3][:] = monob
    res[4][:] = cd
    res[5][:] = cdn
    res[6][:] = ct
    res[7][:] = ctn
    res[8][:] = cq
    res[9][:] = cqn
    res[10][:] = tsrv
    res[11][:] = tsr
    res[12][:] = qsr
    res[13][:] = usr
    res[14][:] = psim
    res[15][:] = psit
412 413 414 415 416 417 418 419
    res[16][:] = psiq
    res[17][:] = u10n
    res[18][:] = t10n
    res[19][:] = tv10n
    res[20][:] = q10n
    res[21][:] = zo
    res[22][:] = zot
    res[23][:] = zoq
420 421 422
    res[24][:] = uref
    res[25][:] = tref
    res[26][:] = qref
423
    res[27][:] = itera
424 425
    res[28][:] = dter
    res[29][:] = dqer
426 427 428 429 430 431
    res[30][:] = dtwl
    res[31][:] = qair
    res[32][:] = qsea
    res[33][:] = Rl
    res[34][:] = Rs
    res[35][:] = Rnl
432

433 434 435 436 437
    if (out == 0):
        res[:, ind] = np.nan
    # set missing values where data have non acceptable values
    res = np.where(spd < 0, np.nan, res)

438
    return res