toy_ASFC.py 27.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
"""
example of running AirSeaFluxCode with
1. R/V data (data_all.csv) or
2. one day era5 hourly data (era5_r360x180.nc)
compute fluxes
output NetCDF4
and statistics in stats.txt

@author: sbiri
"""
#%% import packages
import matplotlib.pyplot as plt
import netCDF4 as nc
import numpy as np
import pandas as pd
from AirSeaFluxCode import AirSeaFluxCode
import time
from tabulate import tabulate
#%%
def reject_outliers(data, m=2):
    x = np.copy(data)
    x = np.where(np.abs(x - np.nanmean(x)) < m*np.nanstd(x),
                    x, np.nan)
    return x


def toy_ASFC(inF, outF, gustIn, cskinIn, tolIn, meth):
    """


    Parameters
    ----------
    inF : str
        input filename either data_all.csv or era5_r360x180.nc
    outF : str
        output filename
    gustIn : float
        gustiness option e.g. [1, 1.2, 800]
    cskinIn : int
        cool skin option input 0 or 1
    tolIn : float
        tolerance input option e.g. ['all', 0.01, 0.01, 5e-05, 0.01, 1, 1]
    meth : str
        parametrisation method option

    Returns
    -------
    res : float
        AirSeaFluxCode output
    lon : float
        longitude from input netCDF file
    lat : float
        latitude from input netCDF file

    """
    if (inF == "data_all.csv"):
        #%% load data_all
        inDt = pd.read_csv("data_all.csv")
        date = np.asarray(inDt["Date"])
        lon = np.asarray(inDt["Longitude"])
        lat = np.asarray(inDt["Latitude"])
        spd = np.asarray(inDt["Wind speed"])
        t = np.asarray(inDt["Air temperature"])
        sst = np.asarray(inDt["SST"])
        rh = np.asarray(inDt["RH"])
        p = np.asarray(inDt["P"])
        sw = np.asarray(inDt["Rs"])
        hu = np.asarray(inDt["zu"])
        ht = np.asarray(inDt["zt"])
        hin = np.array([hu, ht, ht])
        del hu, ht, inDt
        #%% run AirSeaFluxCode
73
        temp = AirSeaFluxCode(spd, t, sst, lat=lat, hum=['rh', rh], P=p,
74 75
                             hin=hin, Rs=sw, tol=tolIn, gust=gustIn,
                             cskin=cskinIn, meth=meth, L="ecmwf", n=30)
76 77 78
        res = temp.loc[:,"tau":"Rnl"]
        res = res.to_numpy().T
        del temp
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        #%% delete variables
        del spd, t, sst, rh, p, sw, hin

    elif (inF == 'era5_r360x180.nc'):
        #%% load era5_r360x180.nc
        fid = nc.Dataset(inF)
        lon = np.array(fid.variables["lon"])
        lat = np.array(fid.variables["lat"])
        T = np.array(fid.variables["t2m"])
        tim = np.array(fid.variables["time"])
        Td = np.array(fid.variables["d2m"])
        sst = np.array(fid.variables["sst"])
        sst = np.where(sst < -100, np.nan, sst)
        p = np.array(fid.variables["msl"])/100 # to set hPa
        lw = np.array(fid.variables["strd"])/60/60
        sw = np.array(fid.variables["ssrd"])/60/60
        u = np.array(fid.variables["u10"])
        v = np.array(fid.variables["v10"])
        lsm = np.array(fid.variables["lsm"])
        fid.close()
        spd = np.sqrt(np.power(u, 2)+np.power(v, 2))
        del u, v, fid
        lsm = np.where(lsm > 0, np.nan, 1) # reverse 0 on land 1 over ocean
        hin = np.array([10, 2, 2])
        latIn = np.tile(lat, (len(lon), 1)).T.reshape(len(lon)*len(lat))
        date = np.copy(tim)
        #%% run AirSeaFluxCode
        res = np.zeros((len(tim),len(lon)*len(lat), 36))
        # reshape input and run code
        for x in range(len(tim)):
109
            temp = AirSeaFluxCode(spd.reshape(len(tim), len(lon)*len(lat))[x, :],
110 111 112 113 114 115 116 117 118 119
                               T.reshape(len(tim), len(lon)*len(lat))[x, :],
                               sst.reshape(len(tim), len(lon)*len(lat))[x, :],
                               lat=latIn,
                               hum=['Td', Td.reshape(len(tim), len(lon)*len(lat))[x, :]],
                               P=p.reshape(len(tim), len(lon)*len(lat))[x, :],
                               hin=hin,
                               Rs=sw.reshape(len(tim), len(lon)*len(lat))[x, :],
                               Rl=lw.reshape(len(tim), len(lon)*len(lat))[x, :],
                               gust=gustIn, cskin=cskinIn, tol=tolIn, qmeth='WMO',
                               meth=meth, n=30, L="ecmwf")
120 121 122 123
            a = temp.loc[:,"tau":"Rnl"]
            a = a.to_numpy()
            del temp
            res[x, :, :] = a
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
            del a

    if (outF[-3:] == '.nc'):
        if (inF == 'era5_r360x180.nc'):
            #%% save NetCDF4
            fid = nc.Dataset(outF,'w', format='NETCDF4')
            fid.createDimension('lon', len(lon))
            fid.createDimension('lat', len(lat))
            fid.createDimension('time', None)
            longitude = fid.createVariable('lon', 'f4', 'lon')
            latitude = fid.createVariable('lat', 'f4', 'lat')
            Date = fid.createVariable('Date', 'i4', 'time')
            tau = fid.createVariable('tau', 'f4', ('time','lat','lon'))
            sensible = fid.createVariable('shf', 'f4', ('time','lat','lon'))
            latent = fid.createVariable('lhf', 'f4', ('time','lat','lon'))
            monob = fid.createVariable('MO', 'f4', ('time','lat','lon'))
            cd = fid.createVariable('cd', 'f4', ('time','lat','lon'))
            cdn = fid.createVariable('cdn', 'f4', ('time','lat','lon'))
            ct = fid.createVariable('ct', 'f4', ('time','lat','lon'))
            ctn = fid.createVariable('ctn', 'f4', ('time','lat','lon'))
            cq = fid.createVariable('cq', 'f4', ('time','lat','lon'))
            cqn = fid.createVariable('cqn', 'f4', ('time','lat','lon'))
            tsrv = fid.createVariable('tsrv', 'f4', ('time','lat','lon'))
            tsr = fid.createVariable('tsr', 'f4', ('time','lat','lon'))
            qsr = fid.createVariable('qsr', 'f4', ('time','lat','lon'))
            usr = fid.createVariable('usr', 'f4', ('time','lat','lon'))
            psim = fid.createVariable('psim', 'f4', ('time','lat','lon'))
            psit = fid.createVariable('psit', 'f4', ('time','lat','lon'))
            psiq = fid.createVariable('psiq', 'f4', ('time','lat','lon'))
            u10n = fid.createVariable('u10n', 'f4', ('time','lat','lon'))
            t10n = fid.createVariable('t10n', 'f4', ('time','lat','lon'))
            tv10n = fid.createVariable('tv10n', 'f4', ('time','lat','lon'))
            q10n = fid.createVariable('q10n', 'f4', ('time','lat','lon'))
            zo = fid.createVariable('zo', 'f4', ('time','lat','lon'))
            zot = fid.createVariable('zot', 'f4', ('time','lat','lon'))
            zoq = fid.createVariable('zoq', 'f4', ('time','lat','lon'))
            urefs = fid.createVariable('uref', 'f4', ('time','lat','lon'))
            trefs = fid.createVariable('tref', 'f4', ('time','lat','lon'))
            qrefs = fid.createVariable('qref', 'f4', ('time','lat','lon'))
            itera = fid.createVariable('iter', 'i4', ('time','lat','lon'))
            dter = fid.createVariable('dter', 'f4', ('time','lat','lon'))
            dqer = fid.createVariable('dqer', 'f4', ('time','lat','lon'))
            dtwl = fid.createVariable('dtwl', 'f4', ('time','lat','lon'))
            qair = fid.createVariable('qair', 'f4', ('time','lat','lon'))
            qsea = fid.createVariable('qsea', 'f4', ('time','lat','lon'))
            Rl = fid.createVariable('Rl', 'f4', ('time','lat','lon'))
            Rs = fid.createVariable('Rs', 'f4', ('time','lat','lon'))
            Rnl = fid.createVariable('Rnl', 'f4', ('time','lat','lon'))

            longitude[:] = lon
            latitude[:] = lat
            Date[:] = tim
            tau[:] = res[:, :, 0].reshape((len(tim), len(lat), len(lon)))*lsm
            sensible[:] = res[:, :, 1].reshape((len(tim), len(lat), len(lon)))*lsm
            latent[:] = res[:, :, 2].reshape((len(tim), len(lat), len(lon)))*lsm
            monob[:] = res[:, :, 3].reshape((len(tim), len(lat), len(lon)))*lsm
            cd[:] = res[:, :, 4].reshape((len(tim), len(lat), len(lon)))*lsm
            cdn[:] = res[:, :, 5].reshape((len(tim), len(lat), len(lon)))*lsm
            ct[:] = res[:, :, 6].reshape((len(tim), len(lat), len(lon)))*lsm
            ctn[:] = res[:, :, 7].reshape((len(tim), len(lat), len(lon)))*lsm
            cq[:] = res[:, :, 8].reshape((len(tim), len(lat), len(lon)))*lsm
            cqn[:] = res[:, :, 9].reshape((len(tim), len(lat), len(lon)))*lsm
            tsrv[:] = res[:, :, 10].reshape((len(tim), len(lat), len(lon)))*lsm
            tsr[:] = res[:, :, 11].reshape((len(tim), len(lat), len(lon)))*lsm
            qsr[:] = res[:, :, 12].reshape((len(tim), len(lat), len(lon)))*lsm
            usr[:] = res[:, :, 13].reshape((len(tim), len(lat), len(lon)))*lsm
            psim[:] = res[:, :, 14].reshape((len(tim), len(lat), len(lon)))*lsm
            psit[:] = res[:, :, 15].reshape((len(tim), len(lat), len(lon)))*lsm
            psiq[:] = res[:, :, 16].reshape((len(tim), len(lat), len(lon)))*lsm
            u10n[:] = res[:, :, 17].reshape((len(tim), len(lat), len(lon)))*lsm
            t10n[:] = res[:, :, 18].reshape((len(tim), len(lat), len(lon)))*lsm
            tv10n[:] = res[:, :, 19].reshape((len(tim), len(lat), len(lon)))*lsm
            q10n[:] = res[:, :, 20].reshape((len(tim), len(lat), len(lon)))*lsm
            zo[:] = res[:, :, 21].reshape((len(tim), len(lat), len(lon)))*lsm
            zot[:] = res[:, :, 22].reshape((len(tim), len(lat), len(lon)))*lsm
            zoq[:] = res[:, :, 23].reshape((len(tim), len(lat), len(lon)))*lsm
            urefs[:] = res[:, :, 24].reshape((len(tim), len(lat), len(lon)))*lsm
            trefs[:] = res[:, :, 25].reshape((len(tim), len(lat), len(lon)))*lsm
            qrefs[:] = res[:, :, 26].reshape((len(tim), len(lat), len(lon)))*lsm
            itera[:] = res[:, :, 27].reshape((len(tim), len(lat), len(lon)))*lsm
            dter[:] = res[:, :, 28].reshape((len(tim), len(lat), len(lon)))*lsm
            dqer[:] = res[:, :, 29].reshape((len(tim), len(lat), len(lon)))*lsm
            dtwl[:] = res[:, :, 30].reshape((len(tim), len(lat), len(lon)))*lsm
            qair[:] = res[:, :, 31].reshape((len(tim), len(lat), len(lon)))*lsm
            qsea[:] = res[:, :, 32].reshape((len(tim), len(lat), len(lon)))*lsm
            Rl = res[:, :, 33].reshape((len(tim), len(lat), len(lon)))
            Rs = res[:, :, 34].reshape((len(tim), len(lat), len(lon)))
            Rnl = res[:, :, 35].reshape((len(tim), len(lat), len(lon)))
            longitude.long_name = 'Longitude'
            longitude.units = 'degrees East'
            latitude.long_name = 'Latitude'
            latitude.units = 'degrees North'
            Date.long_name = "calendar date"
            Date.units = "YYYYMMDD UTC"
            tau.long_name = 'Wind stress'
            tau.units = 'N/m^2'
            sensible.long_name = 'Sensible heat fluxe'
            sensible.units = 'W/m^2'
            latent.long_name = 'Latent heat flux'
            latent.units = 'W/m^2'
            monob.long_name = 'Monin-Obukhov length'
            monob.units = 'm'
            cd.long_name = 'Drag coefficient'
            cd.units = ''
            cdn.long_name = 'Neutral Drag coefficient'
            cdn.units = ''
            ct.long_name = 'Heat exchange coefficient'
            ct.units = ''
            ctn.long_name = 'Neutral Heat exchange coefficient'
            ctn.units = ''
            cq.long_name = 'Moisture exchange coefficient'
            cq.units = ''
            cqn.long_name = 'Neutral Moisture exchange coefficient'
            cqn.units = ''
            tsrv.long_name = 'star virtual temperature'
            tsrv.units = 'degrees Celsius'
            tsr.long_name = 'star temperature'
            tsr.units = 'degrees Celsius'
            qsr.long_name = 'star specific humidity'
            qsr.units = 'gr/kgr'
            usr.long_name = 'friction velocity'
            usr.units = 'm/s'
            psim.long_name = 'Momentum stability function'
            psit.long_name = 'Heat stability function'
            u10n.long_name = '10m neutral wind speed'
            u10n.units = 'm/s'
            t10n.long_name = '10m neutral temperature'
            t10n.units = 'degrees Celsius'
            tv10n.long_name = '10m neutral virtual temperature'
            tv10n.units = 'degrees Celsius'
            q10n.long_name = '10m neutral specific humidity'
            q10n.units = 'gr/kgr'
            zo.long_name = 'momentum roughness length'
            zo.units = 'm'
            zot.long_name = 'temperature roughness length'
            zot.units = 'm'
            zoq.long_name = 'moisture roughness length'
            zoq.units = 'm'
            urefs.long_name = 'wind speed at ref height'
            urefs.units = 'm/s'
            trefs.long_name = 'temperature at ref height'
            trefs.units = 'degrees Celsius'
            qrefs.long_name = 'specific humidity at ref height'
            qrefs.units = 'gr/kgr'
            qair.long_name = 'specific humidity of air'
            qair.units = 'gr/kgr'
            qsea.long_name = 'specific humidity over water'
            qsea.units = 'gr/kgr'
            itera.long_name = 'number of iterations'
            fid.close()
            #%% delete variables
            del longitude, latitude, Date, tau, sensible, latent, monob, cd, cdn
            del ct, ctn, cq, cqn, tsrv, tsr, qsr, usr, psim, psit, psiq, u10n, t10n
            del tv10n, q10n, zo, zot, zoq, urefs, trefs, qrefs, itera, dter, dqer
            del qair, qsea, Rl, Rs, Rnl, dtwl
            del tim, T, Td, p, lw, sw, lsm, spd, hin, latIn
        else:
            #%% save NetCDF4
            fid = nc.Dataset(outF,'w', format='NETCDF4')
            fid.createDimension('lon', len(lon))
            fid.createDimension('lat', len(lat))
            fid.createDimension('time', None)
            longitude = fid.createVariable('lon', 'f4', 'lon')
            latitude = fid.createVariable('lat', 'f4', 'lat')
            Date = fid.createVariable('Date', 'i4', 'time')
            tau = fid.createVariable('tau', 'f4', 'time')
            sensible = fid.createVariable('shf', 'f4', 'time')
            latent = fid.createVariable('lhf', 'f4', 'time')
            monob = fid.createVariable('MO', 'f4', 'time')
            cd = fid.createVariable('cd', 'f4', 'time')
            cdn = fid.createVariable('cdn', 'f4', 'time')
            ct = fid.createVariable('ct', 'f4', 'time')
            ctn = fid.createVariable('ctn', 'f4', 'time')
            cq = fid.createVariable('cq', 'f4', 'time')
            cqn = fid.createVariable('cqn', 'f4', 'time')
            tsrv = fid.createVariable('tsrv', 'f4', 'time')
            tsr = fid.createVariable('tsr', 'f4', 'time')
            qsr = fid.createVariable('qsr', 'f4', 'time')
            usr = fid.createVariable('usr', 'f4', 'time')
            psim = fid.createVariable('psim', 'f4', 'time')
            psit = fid.createVariable('psit', 'f4', 'time')
            psiq = fid.createVariable('psiq', 'f4', 'time')
            u10n = fid.createVariable('u10n', 'f4', 'time')
            t10n = fid.createVariable('t10n', 'f4', 'time')
            tv10n = fid.createVariable('tv10n', 'f4', 'time')
            q10n = fid.createVariable('q10n', 'f4', 'time')
            zo = fid.createVariable('zo', 'f4', 'time')
            zot = fid.createVariable('zot', 'f4', 'time')
            zoq = fid.createVariable('zoq', 'f4', 'time')
            urefs = fid.createVariable('uref', 'f4', 'time')
            trefs = fid.createVariable('tref', 'f4', 'time')
            qrefs = fid.createVariable('qref', 'f4', 'time')
            itera = fid.createVariable('iter', 'i4', 'time')
            dter = fid.createVariable('dter', 'f4', 'time')
            dqer = fid.createVariable('dqer', 'f4', 'time')
            dtwl = fid.createVariable('dter', 'f4', 'time')
            qair = fid.createVariable('qair', 'f4', 'time')
            qsea = fid.createVariable('qsea', 'f4', 'time')
            Rl = fid.createVariable('Rl', 'f4', 'time')
            Rs = fid.createVariable('Rs', 'f4', 'time')
            Rnl = fid.createVariable('Rnl', 'f4', 'time')

            longitude[:] = lon
            latitude[:] = lat
            Date[:] = date
            tau[:] = res[0]
            sensible[:] = res[1]
            latent[:] = res[2]
            monob[:] = res[3]
            cd[:] = res[4]
            cdn[:] = res[5]
            ct[:] = res[6]
            ctn[:] = res[7]
            cq[:] = res[8]
            cqn[:] = res[9]
            tsrv[:] = res[10]
            tsr[:] = res[11]
            qsr[:] = res[12]
            usr[:] = res[13]
            psim[:] = res[14]
            psit[:] = res[15]
            psiq[:] = res[16]
            u10n[:] = res[17]
            t10n[:] = res[18]
            tv10n[:] = res[19]
            q10n[:] = res[20]
            zo[:] = res[21]
            zot[:] = res[22]
            zoq[:] = res[23]
            urefs[:] = res[24]
            trefs[:] = res[25]
            qrefs[:] = res[26]
            itera[:] = res[27]
            dter[:] = res[28]
            dqer[:] = res[29]
            dtwl[:] = res[30]
            qair[:] = res[31]
            qsea[:] = res[32]
362 363 364
            Rl[:] = res[33]
            Rs[:] = res[34]
            Rnl[:] = res[35]
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
            longitude.long_name = 'Longitude'
            longitude.units = 'degrees East'
            latitude.long_name = 'Latitude'
            latitude.units = 'degrees North'
            Date.long_name = "calendar date"
            Date.units = "YYYYMMDD UTC"
            tau.long_name = 'Wind stress'
            tau.units = 'N/m^2'
            sensible.long_name = 'Sensible heat fluxe'
            sensible.units = 'W/m^2'
            latent.long_name = 'Latent heat flux'
            latent.units = 'W/m^2'
            monob.long_name = 'Monin-Obukhov length'
            monob.units = 'm'
            cd.long_name = 'Drag coefficient'
            cd.units = ''
            cdn.long_name = 'Neutral Drag coefficient'
            cdn.units = ''
            ct.long_name = 'Heat exchange coefficient'
            ct.units = ''
            ctn.long_name = 'Neutral Heat exchange coefficient'
            ctn.units = ''
            cq.long_name = 'Moisture exchange coefficient'
            cq.units = ''
            cqn.long_name = 'Neutral Moisture exchange coefficient'
            cqn.units = ''
            tsrv.long_name = 'star virtual temperature'
            tsrv.units = 'degrees Celsius'
            tsr.long_name = 'star temperature'
            tsr.units = 'degrees Celsius'
            qsr.long_name = 'star specific humidity'
            qsr.units = 'gr/kgr'
            usr.long_name = 'friction velocity'
            usr.units = 'm/s'
            psim.long_name = 'Momentum stability function'
            psit.long_name = 'Heat stability function'
            u10n.long_name = '10m neutral wind speed'
            u10n.units = 'm/s'
            t10n.long_name = '10m neutral temperature'
            t10n.units = 'degrees Celsius'
            tv10n.long_name = '10m neutral virtual temperature'
            tv10n.units = 'degrees Celsius'
            q10n.long_name = '10m neutral specific humidity'
            q10n.units = 'gr/kgr'
            zo.long_name = 'momentum roughness length'
            zo.units = 'm'
            zot.long_name = 'temperature roughness length'
            zot.units = 'm'
            zoq.long_name = 'moisture roughness length'
            zoq.units = 'm'
            urefs.long_name = 'wind speed at ref height'
            urefs.units = 'm/s'
            trefs.long_name = 'temperature at ref height'
            trefs.units = 'degrees Celsius'
            qrefs.long_name = 'specific humidity at ref height'
            qrefs.units = 'gr/kgr'
            qair.long_name = 'specific humidity of air'
            qair.units = 'gr/kgr'
            qsea.long_name = 'specific humidity over water'
            qsea.units = 'gr/kgr'
            itera.long_name = 'number of iterations'
            fid.close()
            #%% delete variables
            del longitude, latitude, Date, tau, sensible, latent, monob, cd, cdn
            del ct, ctn, cq, cqn, tsrv, tsr, qsr, usr, psim, psit, psiq, u10n, t10n
            del tv10n, q10n, zo, zot, zoq, urefs, trefs, qrefs, itera, dter, dqer
            del qair, qsea, Rl, Rs, Rnl
            del t, rh, date, p, sw, spd, hin
    else:
        #%% save as .csv
        np.savetxt(outF, np.vstack((date, lon, lat, res)).T,
                   delimiter=',',
                   header="date, lon, lat, tau, shf, lhf, L, cd, cdn, ct, ctn,"
438 439 440
                   " cq, cqn, tsrv, tsr, qsr, usr, psim, psit, psiq, u10n,"
                   " t10n, tv10n, q10n, zo, zot, zoq, uref, tref, qref, iter,"
                   " dter, dqer, dtwl, qair, qsea, Rl, Rs, Rnl")
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
    return res, lon, lat
#%% run function
start_time = time.perf_counter()
#------------------------------------------------------------------------------
inF = input("Give input file name (data_all.csv or era5_r360x180.nc): \n")
meth = input("Give prefered method: \n")
while meth not in ["S80", "S88", "LP82", "YT96", "UA", "LY04", "C30", "C35",
                   "C40", "ecmwf","Beljaars"]:
    print("method unknown")
    meth = input("Give prefered method: \n")
else:
    meth = meth #[meth]
ext = meth+"_"
#------------------------------------------------------------------------------
gustIn = input("Give gustiness option (to use default press enter): \n")
if (gustIn == ''):
    gustIn = None
    ext = ext+'gust_'
else:
    gustIn = np.asarray(eval(gustIn), dtype=float)
    if ((np.all(gustIn) == 0)):
        ext = ext+'nogust_'
    else:
        ext = ext+'gust_'
#------------------------------------------------------------------------------
cskinIn = input("Give cool skin option (to use default press enter): \n")
if (cskinIn == ''):
    cskinIn = None
    if ((cskinIn == None) and (meth == "S80" or meth == "S88" or meth == "LP82"
                             or meth == "YT96" or meth == "UA" or
                             meth == "LY04")):
        cskinIn = 0
        ext = ext+'noskin_'
    elif ((cskinIn == None) and (meth == "C30" or meth == "C35" or meth == "C40"
                               or meth == "ecmwf" or meth == "Beljaars")):
        cskinIn = 1
        ext = ext+'skin_'
else:
    cskinIn = int(cskinIn)
    if (cskinIn == 0):
        ext = ext+'noskin_'
    elif (cskinIn == 1):
        ext = ext+'skin_'
#------------------------------------------------------------------------------
tolIn = input("Give tolerance option (to use default press enter): \n")
if (tolIn == ''):
    tolIn = ['flux', 1e-3, 0.1, 0.1]
else:
    tolIn = eval(tolIn)
ext = ext+'tol'+tolIn[0]
#------------------------------------------------------------------------------
outF = input("Give path and output file name: \n")
if ((outF == '') and (inF == "data_all.csv")):
    outF = "out_"+inF[:-4]+"_"+ext+".csv"
elif ((outF == '') and (inF == "era5_r360x180.nc")):
    outF = "out_"+inF[:-3]+"_"+ext+".nc"
elif ((outF[-4:] == '.csv') and (inF == 'era5_r360x180.nc')):
    outF = outF[:-4]+".nc"
elif ((outF[-3:] != '.nc') and (outF[-4:] != '.csv')):
    if (inF == "data_all.csv"):
        outF = outF+".csv"
    else:
        outF = outF+".nc"
else:
    outF = outF
#------------------------------------------------------------------------------
print("\n run_ASFC.py, started for method "+meth)

res, lon, lat = toy_ASFC(inF, outF, gustIn, cskinIn, tolIn, meth)
print("run_ASFC.py took ", np.round((time.perf_counter()-start_time)/60, 2),
      "minutes to run")

#%% generate flux plots
if (inF == 'era5_r360x180.nc'):
    cm = plt.cm.get_cmap('RdYlBu')
    ttl = ["tau (Nm$^{-2}$)", "shf (Wm$^{-2}$)", "lhf (Wm$^{-2}$)"]
    for i in range(3):
        plt.figure()
        plt.contourf(lon, lat,
                     np.nanmean(res[:, :, i], axis=0).reshape(len(lat),
                                                              len(lon)),
                     100, cmap=cm)
        plt.colorbar()
        plt.tight_layout()
        plt.xlabel("Longitude")
        plt.ylabel("Latitude")
        plt.title(meth+', '+ttl[i])
        plt.savefig('./'+ttl[i][:3]+'_'+ext+'.png', dpi=300, bbox_inches='tight')
elif (inF == "data_all.csv"):
    ttl = ["tau (Nm$^{-2}$)", "shf (Wm$^{-2}$)", "lhf (Wm$^{-2}$)"]
    for i in range(3):
        plt.figure()
        plt.plot(res[i],'.c', markersize=1)
        plt.title(meth)
        plt.xlabel("points")
        plt.ylabel(ttl[i])
        plt.savefig('./'+ttl[i][:3]+'_'+ext+'.png', dpi=300, bbox_inches='tight')

#%% generate txt file with statistic
if ((cskinIn == None) and (meth == "S80" or meth == "S88" or meth == "LP82"
                           or meth == "YT96" or meth == "UA" or
                           meth == "LY04")):
   cskinIn = 0
elif ((cskinIn == None) and (meth == "C30" or meth == "C35" or meth == "C40"
                             or meth == "ecmwf" or meth == "Beljaars")):
   cskinIn = 1
if (np.all(gustIn == None) and (meth == "C30" or meth == "C35" or meth == "C40")):
    gustIn = [1, 1.2, 600]
elif (np.all(gustIn == None) and (meth == "UA" or meth == "ecmwf")):
    gustIn = [1, 1, 1000]
elif np.all(gustIn == None):
    gustIn = [1, 1.2, 800]
elif ((np.size(gustIn) < 3) and (gustIn == 0)):
    gust = [0, 0, 0]
if (tolIn == None):
    tolIn = ['flux', 0.01, 1, 1]

print("Input summary", file=open('./stats.txt', 'a'))
print('input file name: {}, \n method: {}, \n gustiness: {}, \n cskin: {},'
      ' \n tolerance: {}'.format(inF, meth, gustIn, cskinIn, tolIn),
      file=open('./stats.txt', 'a'))
ttl = np.asarray(["tau  ", "shf  ", "lhf  ", "L    ", "cd   ", "cdn  ",
                  "ct   ", "ctn  ", "cq   ", "cqn  ", "tsrv ", "tsr  ",
                  "qsr  ", "usr  ", "psim ", "psit ", "psiq ", "u10n ",
                  "t10n ", "tv10n", "q10n ", "zo   ", "zot  ", "zoq  ",
                  "urefs", "trefs", "qrefs", "itera", "dter ", "dqer ",
                  "dtwl ", "qair ", "qsea ", "Rl   ", "Rs   ", "Rnl  "])
header = ["var", "mean", "median", "min", "max", "5%", "95%"]
n = np.shape(res)
stats = np.copy(ttl)
if (inF == 'era5_r360x180.nc'):
    stats = np.c_[stats, np.nanmean(res.reshape(n[0]*n[1], n[2]), axis=0)]
    stats = np.c_[stats, np.nanmedian(res.reshape(n[0]*n[1], n[2]), axis=0)]
    stats = np.c_[stats, np.nanmin(res.reshape(n[0]*n[1], n[2]), axis=0)]
    stats = np.c_[stats, np.nanmax(res.reshape(n[0]*n[1], n[2]), axis=0)]
    stats = np.c_[stats, np.nanpercentile(res.reshape(n[0]*n[1], n[2]), 5,
                                          axis=0)]
    stats = np.c_[stats, np.nanpercentile(res.reshape(n[0]*n[1], n[2]), 95,
                                          axis=0)]
    print(tabulate(stats, headers=header, tablefmt="github", numalign="left",
                   floatfmt=("s", "2.2e", "2.2e", "2.2e", "2.2e", "2.2e",
                               "2.2e")), file=open('./stats.txt', 'a'))
    print('-'*79+'\n', file=open('./stats.txt', 'a'))
elif (inF == "data_all.csv"):
    stats = np.c_[stats, np.nanmean(res, axis=1)]
    stats = np.c_[stats, np.nanmedian(res, axis=1)]
    stats = np.c_[stats, np.nanmin(res, axis=1)]
    stats = np.c_[stats, np.nanmax(res, axis=1)]
    stats = np.c_[stats, np.nanpercentile(res, 5, axis=1)]
    stats = np.c_[stats, np.nanpercentile(res, 95, axis=1)]
    print(tabulate(stats, headers=header, tablefmt="github", numalign="left",
                   floatfmt=("s", "2.2e", "2.2e", "2.2e", "2.2e", "2.2e",
                               "2.2e")), file=open('./stats.txt', 'a'))
    print('-'*79+'\n', file=open('./stats.txt', 'a'))

print('input file name: {}, \n method: {}, \n gustiness: {}, \n cskin: {},'
      ' \n tolerance: {}, \n output is written in: {}'.format(inF, meth,
                                                              gustIn, cskinIn,
                                                              tolIn, outF),
      file=open('./readme.txt', 'w'))