1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
import numpy as np
import pandas as pd
import logging
from get_init import get_init
from hum_subs import (get_hum, gamma_moist)
from util_subs import (kappa, CtoK, get_heights)
from flux_subs import (cs_C35, cs_Beljaars, cs_ecmwf, wl_ecmwf,
get_gust, get_L, get_strs, psim_calc,
psit_calc, cdn_calc, cd_calc, ctcq_calc, ctcqn_calc)
def AirSeaFluxCode(spd, T, SST, lat=None, hum=None, P=None, hin=18, hout=10,
Rl=None, Rs=None, cskin=None, skin="C35", wl=0, gust=None,
meth="S80", qmeth="Buck2", tol=None, n=10, out=0, L=None):
"""
Calculates turbulent surface fluxes using different parameterizations
Calculates height adjusted values for spd, T, q
Parameters
----------
spd : float
relative wind speed in m/s (is assumed as magnitude difference
between wind and surface current vectors)
T : float
air temperature in K (will convert if < 200)
SST : float
sea surface temperature in K (will convert if < 200)
lat : float
latitude (deg), default 45deg
hum : float
humidity input switch 2x1 [x, values] default is relative humidity
x='rh' : relative humidity in %
x='q' : specific humidity (g/kg)
x='Td' : dew point temperature (K)
P : float
air pressure (hPa), default 1013hPa
hin : float
sensor heights in m (array 3x1 or 3xn), default 18m
hout : float
output height, default is 10m
Rl : float
downward longwave radiation (W/m^2)
Rs : float
downward shortwave radiation (W/m^2)
cskin : int
0 switch cool skin adjustment off, else 1
default is 1
skin : str
cool skin method option "C35", "ecmwf" or "Beljaars"
wl : int
warm layer correction default is 0, to switch on set to 1
gust : int
3x1 [x, beta, zi] x=1 to include the effect of gustiness, else 0
beta gustiness parameter, beta=1 for UA, beta=1.2 for COARE
zi PBL height (m) 600 for COARE, 1000 for UA and ecmwf, 800 default
default for COARE [1, 1.2, 600]
default for UA, ecmwf [1, 1, 1000]
default else [1, 1.2, 800]
meth : str
"S80", "S88", "LP82", "YT96", "UA", "LY04", "C30", "C35",
"ecmwf", "Beljaars"
qmeth : str
is the saturation evaporation method to use amongst
"HylandWexler","Hardy","Preining","Wexler","GoffGratch","WMO",
"MagnusTetens","Buck","Buck2","WMO2018","Sonntag","Bolton",
"IAPWS","MurphyKoop"]
default is Buck2
tol : float
4x1 or 7x1 [option, lim1-3 or lim1-6]
option : 'flux' to set tolerance limits for fluxes only lim1-3
option : 'ref' to set tolerance limits for height adjustment lim-1-3
option : 'all' to set tolerance limits for both fluxes and height
adjustment lim1-6
default is tol=['all', 0.01, 0.01, 1e-05, 1e-3, 0.1, 0.1]
n : int
number of iterations (defautl = 10)
out : int
set 0 to set points that have not converged to missing (default)
set 1 to keep points
L : str
Monin-Obukhov length definition options
"S80" : default for S80, S88, LP82, YT96 and LY04
"ecmwf" : following ecmwf (IFS Documentation cy46r1), default for
ecmwf
Returns
-------
res : array that contains
1. momentum flux (N/m^2)
2. sensible heat (W/m^2)
3. latent heat (W/m^2)
4. Monin-Obhukov length (m)
5. drag coefficient (cd)
6. neutral drag coefficient (cdn)
7. heat exchange coefficient (ct)
8. neutral heat exchange coefficient (ctn)
9. moisture exhange coefficient (cq)
10. neutral moisture exchange coefficient (cqn)
11. star virtual temperatcure (tsrv)
12. star temperature (tsr)
13. star specific humidity (qsr)
14. star wind speed (usr)
15. momentum stability function (psim)
16. heat stability function (psit)
17. moisture stability function (psiq)
18. 10m neutral wind speed (u10n)
19. 10m neutral temperature (t10n)
20. 10m neutral virtual temperature (tv10n)
21. 10m neutral specific humidity (q10n)
22. surface roughness length (zo)
23. heat roughness length (zot)
24. moisture roughness length (zoq)
25. wind speed at reference height (uref)
26. temperature at reference height (tref)
27. specific humidity at reference height (qref)
28. number of iterations until convergence
29. cool-skin temperature depression (dter)
30. cool-skin humidity depression (dqer)
31. warm layer correction (dtwl)
32. specific humidity of air (qair)
33. specific humidity at sea surface (qsea)
34. downward longwave radiation (Rl)
35. downward shortwave radiation (Rs)
36. downward net longwave radiation (Rnl)
37. gust wind speed (ug)
38. Bulk Richardson number (Rib)
39. relative humidity (rh)
40. flag ("n": normal, "o": out of nominal range,
"u": u10n<0, "q":q10n<0
"m": missing, "l": Rib<-0.5 or Rib>0.2,
"i": convergence fail at n)
2021 / Author S. Biri
"""
logging.basicConfig(filename='flux_calc.log', filemode="w",
format='%(asctime)s %(message)s',level=logging.INFO)
logging.captureWarnings(True)
# check input values and set defaults where appropriate
lat, hum, P, Rl, Rs, cskin, skin, wl, gust, tol, L, n = get_init(spd, T,
SST, lat,
hum, P,
Rl, Rs,
cskin,
skin,
wl, gust,
L, tol, n,
meth,
qmeth)
flag = np.ones(spd.shape, dtype="object")*"n"
flag = np.where(np.isnan(spd+T+SST+lat+hum[1]+P+Rs), "m", flag)
ref_ht = 10 # reference height
h_in = get_heights(hin, len(spd)) # heights of input measurements/fields
h_out = get_heights(hout, 1) # desired height of output variables
logging.info('method %s, inputs: lat: %s | P: %s | Rl: %s |'
' Rs: %s | gust: %s | cskin: %s | L : %s', meth,
np.nanmedian(lat), np.round(np.nanmedian(P), 2),
np.round(np.nanmedian(Rl),2 ), np.round(np.nanmedian(Rs), 2),
gust, cskin, L)
# set up/calculate temperatures and specific humidities
th = np.where(T < 200, (np.copy(T)+CtoK) *
np.power(1000/P,287.1/1004.67),
np.copy(T)*np.power(1000/P,287.1/1004.67)) # potential T
sst = np.where(SST < 200, np.copy(SST)+CtoK, np.copy(SST))
qair, qsea = get_hum(hum, T, sst, P, qmeth)
Rb = np.empty(sst.shape)
#lapse rate
tlapse = gamma_moist(SST, T, qair/1000)
Ta = np.where(T < 200, np.copy(T)+CtoK+tlapse*h_in[1],
np.copy(T)+tlapse*h_in[1]) # convert to Kelvin if needed
logging.info('method %s and q method %s | qsea:%s, qair:%s', meth, qmeth,
np.round(np.nanmedian(qsea), 7),
np.round(np.nanmedian(qair), 7))
if (np.all(np.isnan(qsea)) or np.all(np.isnan(qair))):
print("qsea and qair cannot be nan")
dt = Ta - sst
dq = qair - qsea
# first guesses
t10n, q10n = np.copy(Ta), np.copy(qair)
tv10n = t10n*(1+0.6077*q10n)
# Zeng et al. 1998
tv=th*(1+0.6077*qair) # virtual potential T
dtv=dt*(1+0.6077*qair)+0.6077*th*dq
# ------------
rho = P*100/(287.1*tv10n)
lv = (2.501-0.00237*(sst-CtoK))*1e6
cp = 1004.67*(1 + 0.00084*qsea)
u10n = np.copy(spd)
usr = 0.035*u10n
cd10n = cdn_calc(u10n, usr, Ta, lat, meth)
psim, psit, psiq = (np.zeros(spd.shape), np.zeros(spd.shape),
np.zeros(spd.shape))
cd = cd_calc(cd10n, h_in[0], ref_ht, psim)
tsr, tsrv = np.zeros(spd.shape), np.zeros(spd.shape)
qsr = np.zeros(spd.shape)
# cskin parameters
tkt = 0.001*np.ones(T.shape)
dter = np.ones(T.shape)*0.3
dqer = dter*0.622*lv*qsea/(287.1*np.power(sst, 2))
Rnl = 0.97*(5.67e-8*np.power(sst-0.3*cskin, 4)-Rl)
Qs = 0.945*Rs
dtwl = np.ones(T.shape)*0.3
skt = np.copy(sst)
# gustiness adjustment
if (gust[0] == 1 and meth == "UA"):
wind = np.where(dtv >= 0, np.where(spd > 0.1, spd, 0.1),
np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2)))
elif (gust[0] == 1):
wind = np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2))
elif (gust[0] == 0):
wind = np.copy(spd)
# stars and roughness lengths
usr = np.sqrt(cd*np.power(wind, 2))
zo = 1e-4*np.ones(spd.shape)
zot, zoq = 1e-4*np.ones(spd.shape), 1e-4*np.ones(spd.shape)
ct10n = np.power(kappa, 2)/(np.log(h_in[0]/zo)*np.log(h_in[1]/zot))
cq10n = np.power(kappa, 2)/(np.log(h_in[0]/zo)*np.log(h_in[2]/zoq))
ct = np.power(kappa, 2)/((np.log(h_in[0]/zo)-psim) *
(np.log(h_in[1]/zot)-psit))
cq = np.power(kappa, 2)/((np.log(h_in[0]/zo)-psim) *
(np.log(h_in[2]/zoq)-psiq))
monob = -100*np.ones(spd.shape) # Monin-Obukhov length
tsr = (dt+dter*cskin-dtwl*wl)*kappa/(np.log(h_in[1]/zot) -
psit_calc(h_in[1]/monob, meth))
qsr = (dq+dqer*cskin)*kappa/(np.log(h_in[2]/zoq) -
psit_calc(h_in[2]/monob, meth))
# set-up to feed into iteration loop
it, ind = 0, np.where(spd > 0)
ii, itera = True, -1*np.ones(spd.shape)
tau = 0.05*np.ones(spd.shape)
sensible = 5*np.ones(spd.shape)
latent = 65*np.ones(spd.shape)
# iteration loop
while np.any(ii):
it += 1
if it > n:
break
if (tol[0] == 'flux'):
old = np.array([np.copy(tau), np.copy(sensible), np.copy(latent)])
elif (tol[0] == 'ref'):
old = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n)])
elif (tol[0] == 'all'):
old = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n),
np.copy(tau), np.copy(sensible), np.copy(latent)])
cd10n[ind] = cdn_calc(u10n[ind], usr[ind], Ta[ind], lat[ind], meth)
if (np.all(np.isnan(cd10n))):
break
logging.info('break %s at iteration %s cd10n<0', meth, it)
zo[ind] = ref_ht/np.exp(kappa/np.sqrt(cd10n[ind]))
psim[ind] = psim_calc(h_in[0, ind]/monob[ind], meth)
cd[ind] = cd_calc(cd10n[ind], h_in[0, ind], ref_ht, psim[ind])
ct10n[ind], cq10n[ind] = ctcqn_calc(h_in[1, ind]/monob[ind],
cd10n[ind], usr[ind], zo[ind],
Ta[ind], meth)
zot[ind] = ref_ht/(np.exp(np.power(kappa, 2) /
(ct10n[ind]*np.log(ref_ht/zo[ind]))))
zoq[ind] = ref_ht/(np.exp(np.power(kappa, 2) /
(cq10n[ind]*np.log(ref_ht/zo[ind]))))
psit[ind] = psit_calc(h_in[1, ind]/monob[ind], meth)
psiq[ind] = psit_calc(h_in[2, ind]/monob[ind], meth)
ct[ind], cq[ind] = ctcq_calc(cd10n[ind], cd[ind], ct10n[ind], cq10n[ind],
h_in[:, ind], [ref_ht, ref_ht, ref_ht],
psit[ind], psiq[ind])
if (meth == "LY04"):
cd = np.maximum(np.copy(cd), 1e-4)
ct = np.maximum(np.copy(ct), 1e-4)
cq = np.maximum(np.copy(cq), 1e-4)
zo = np.minimum(np.copy(zo), 0.0025)
usr[ind], tsr[ind], qsr[ind] = get_strs(h_in[:, ind], monob[ind],
wind[ind], zo[ind], zot[ind],
zoq[ind], dt[ind], dq[ind],
dter[ind], dqer[ind], dtwl[ind],
ct[ind], cq[ind], cskin, wl,
meth)
if ((cskin == 1) and (wl == 0)):
if (skin == "C35"):
dter[ind], dqer[ind], tkt[ind] = cs_C35(sst[ind], qsea[ind],
rho[ind], Rs[ind],
Rnl[ind],
cp[ind], lv[ind],
np.copy(tkt[ind]),
usr[ind], tsr[ind],
qsr[ind], lat[ind])
elif (skin == "ecmwf"):
dter[ind] = cs_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
lv[ind], usr[ind], tsr[ind], qsr[ind],
sst[ind], lat[ind])
dqer[ind] = (dter[ind]*0.622*lv[ind]*qsea[ind] /
(287.1*np.power(sst[ind], 2)))
elif (skin == "Beljaars"):
Qs[ind], dter[ind] = cs_Beljaars(rho[ind], Rs[ind], Rnl[ind],
cp[ind], lv[ind], usr[ind],
tsr[ind], qsr[ind], lat[ind],
np.copy(Qs[ind]))
dqer = dter*0.622*lv*qsea/(287.1*np.power(sst, 2))
elif ((cskin == 1) and (wl == 1)):
if (skin == "C35"):
dter[ind], dqer[ind], tkt[ind] = cs_C35(sst[ind], qsea[ind],
rho[ind], Rs[ind],
Rnl[ind],
cp[ind], lv[ind],
np.copy(tkt[ind]),
usr[ind], tsr[ind],
qsr[ind], lat[ind])
dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
lv[ind], usr[ind], tsr[ind], qsr[ind],
np.copy(sst[ind]), np.copy(skt[ind]),
np.copy(dter[ind]), lat[ind])
skt = np.copy(sst)-dter+dtwl
elif (skin == "ecmwf"):
dter[ind] = cs_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
lv[ind], usr[ind], tsr[ind], qsr[ind],
sst[ind], lat[ind])
dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
lv[ind], usr[ind], tsr[ind], qsr[ind],
np.copy(sst[ind]), np.copy(skt[ind]),
np.copy(dter[ind]), lat[ind])
skt = np.copy(sst)-dter+dtwl
dqer[ind] = (dter[ind]*0.622*lv[ind]*qsea[ind] /
(287.1*np.power(skt[ind], 2)))
elif (skin == "Beljaars"):
Qs[ind], dter[ind] = cs_Beljaars(rho[ind], Rs[ind], Rnl[ind],
cp[ind], lv[ind], usr[ind],
tsr[ind], qsr[ind], lat[ind],
np.copy(Qs[ind]))
dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
lv[ind], usr[ind], tsr[ind], qsr[ind],
np.copy(sst[ind]), np.copy(skt[ind]),
np.copy(dter[ind]), lat[ind])
skt = np.copy(sst)-dter+dtwl
dqer = dter*0.622*lv*qsea/(287.1*np.power(skt, 2))
else:
dter[ind] = np.zeros(sst[ind].shape)
dqer[ind] = np.zeros(sst[ind].shape)
tkt[ind] = 0.001*np.ones(T[ind].shape)
logging.info('method %s | dter = %s | dqer = %s | tkt = %s | Rnl = %s '
'| usr = %s | tsr = %s | qsr = %s', meth,
np.round(np.nanmedian(dter), 2),
np.round(np.nanmedian(dqer), 7),
np.round(np.nanmedian(tkt), 2),
np.round(np.nanmedian(Rnl), 2),
np.round(np.nanmedian(usr), 3),
np.round(np.nanmedian(tsr), 4),
np.round(np.nanmedian(qsr), 7))
Rnl[ind] = 0.97*(5.67e-8*np.power(sst[ind] -
dter[ind]*cskin, 4)-Rl[ind])
t10n[ind] = (Ta[ind] -
tsr[ind]/kappa*(np.log(h_in[1, ind]/ref_ht)-psit[ind]))
q10n[ind] = (qair[ind] -
qsr[ind]/kappa*(np.log(h_in[2, ind]/ref_ht)-psiq[ind]))
tv10n[ind] = t10n[ind]*(1+0.6077*q10n[ind])
tsrv[ind], monob[ind], Rb[ind] = get_L(L, lat[ind], usr[ind], tsr[ind],
qsr[ind], h_in[:, ind], Ta[ind],
sst[ind]-dter[ind]*cskin+dtwl[ind]*wl,
qair[ind], qsea[ind], wind[ind],
np.copy(monob[ind]), psim[ind],
meth)
# sst[ind]-dter[ind]*cskin+dtwl[ind]*wl
psim[ind] = psim_calc(h_in[0, ind]/monob[ind], meth)
psit[ind] = psit_calc(h_in[1, ind]/monob[ind], meth)
psiq[ind] = psit_calc(h_in[2, ind]/monob[ind], meth)
if (gust[0] == 1 and meth == "UA"):
wind[ind] = np.where(dtv[ind] >= 0, np.where(spd[ind] > 0.1,
spd[ind], 0.1),
np.sqrt(np.power(np.copy(spd[ind]), 2) +
np.power(get_gust(gust[1], tv[ind], usr[ind],
tsrv[ind], gust[2], lat[ind]), 2)))
# Zeng et al. 1998 (20)
elif (gust[0] == 1 and (meth == "C30" or meth == "C35")):
wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) +
np.power(get_gust(gust[1], Ta[ind], usr[ind],
tsrv[ind], gust[2], lat[ind]), 2))
elif (gust[0] == 1):
wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) +
np.power(get_gust(gust[1], Ta[ind], usr[ind],
tsrv[ind], gust[2], lat[ind]), 2))
elif (gust[0] == 0):
wind[ind] = np.copy(spd[ind])
u10n[ind] = wind[ind]-usr[ind]/kappa*(np.log(h_in[0, ind]/10) -
psim[ind])
# usr[ind]/np.sqrt(cd10n[ind])
if (it < 4): # make sure you allow small negative values convergence
u10n = np.where(u10n < 0, 0.5, u10n)
flag = np.where((u10n < 0) & (flag == "n"), "u",
np.where((u10n < 0) & (flag != "u"),
flag+[","]+["u"], flag))
u10n = np.where(u10n < 0, np.nan, u10n)
itera[ind] = np.ones(1)*it
sensible = -rho*cp*usr*tsr
latent = -rho*lv*usr*qsr
if (gust[0] == 1):
tau = rho*np.power(usr, 2)*(spd/wind)
elif (gust[0] == 0):
tau = rho*np.power(usr, 2)
if (tol[0] == 'flux'):
new = np.array([np.copy(tau), np.copy(sensible), np.copy(latent)])
elif (tol[0] == 'ref'):
new = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n)])
elif (tol[0] == 'all'):
new = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n),
np.copy(tau), np.copy(sensible), np.copy(latent)])
d = np.abs(new-old)
if (tol[0] == 'flux'):
ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
(d[2, :] > tol[3]))
elif (tol[0] == 'ref'):
ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
(d[2, :] > tol[3]))
elif (tol[0] == 'all'):
ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
(d[2, :] > tol[3])+(d[3, :] > tol[4]) +
(d[4, :] > tol[5])+(d[5, :] > tol[6]))
if (ind[0].size == 0):
ii = False
else:
ii = True
itera[ind] = -1
itera = np.where(itera > n, -1, itera)
logging.info('method %s | # of iterations:%s', meth, it)
logging.info('method %s | # of points that did not converge :%s \n', meth,
ind[0].size)
# calculate output parameters
rho = (0.34838*P)/(tv10n)
t10n = t10n-(273.16+tlapse*ref_ht)
# solve for zo from cd10n
zo = ref_ht/np.exp(kappa/np.sqrt(cd10n))
# adjust neutral cdn at any output height
cdn = np.power(kappa/np.log(hout/zo), 2)
cd = cd_calc(cdn, h_out[0], h_out[0], psim)
# solve for zot, zoq from ct10n, cq10n
zot = ref_ht/(np.exp(kappa**2/(ct10n*np.log(ref_ht/zo))))
zoq = ref_ht/(np.exp(kappa**2/(cq10n*np.log(ref_ht/zo))))
# adjust neutral ctn, cqn at any output height
ctn =np.power(kappa, 2)/(np.log(h_out[0]/zo)*np.log(h_out[1]/zot))
cqn =np.power(kappa, 2)/(np.log(h_out[0]/zo)*np.log(h_out[2]/zoq))
ct, cq = ctcq_calc(cdn, cd, ctn, cqn, h_out, h_out, psit, psiq)
uref = (spd-usr/kappa*(np.log(h_in[0]/h_out[0])-psim +
psim_calc(h_out[0]/monob, meth)))
tref = (Ta-tsr/kappa*(np.log(h_in[1]/h_out[1])-psit +
psit_calc(h_out[0]/monob, meth)))
tref = tref-(CtoK+tlapse*h_out[1])
qref = (qair-qsr/kappa*(np.log(h_in[2]/h_out[2]) -
psit+psit_calc(h_out[2]/monob, meth)))
if (wl == 0):
dtwl = np.zeros(T.shape) # reset to zero if not used
flag = np.where((q10n < 0) & (flag == "n"), "q",
np.where((q10n < 0) & (flag != "n"), flag+[","]+["q"],
flag))
flag = np.where(((Rb < -0.5) | (Rb > 0.2)) & (flag == "n"), "l",
np.where(((Rb < -0.5) | (Rb > 0.2)) &
((flag != "n") & (("u" in flag) == False) &
(("q" in flag) == False)), flag+[","]+["l"], flag))
flag = np.where((itera == -1) & (flag == "n"), "i",
np.where((itera == -1) &
((flag != "n") & (("u" in flag) == False) &
(("q" in flag) == False)),
flag+[","]+["i"], flag))
if (meth == "S80"):
flag = np.where(((u10n < 6) | (u10n > 22)) & (flag == "n"), "o",
np.where(((u10n < 6) | (u10n > 22)) &
((flag != "n") & (("u" in flag) == False) &
(("q" in flag) == False)),
flag+[","]+["o"], flag))
elif (meth == "LP82"):
flag = np.where(((u10n < 3) | (u10n > 25)) & (flag == "n"), "o",
np.where(((u10n < 3) | (u10n > 25)) &
((flag != "n") & (("u" in flag) == False) &
(("q" in flag) == False)),
flag+[","]+["o"], flag))
elif (meth == "YT96"):
flag = np.where(((u10n < 3) | (u10n > 26)) & (flag == "n"), "o",
np.where(((u10n < 3) | (u10n > 26)) &
((flag != "n") & (("u" in flag) == False) &
(("q" in flag) == False)),
flag+[","]+["o"], flag))
elif (meth == "UA"):
flag = np.where((u10n > 18) & (flag == "n"), "o",
np.where((u10n > 18) &
((flag != "n") & (("u" in flag) == False) &
(("q" in flag) == False)),
flag+[","]+["o"], flag))
elif (meth == "LY04"):
flag = np.where((u10n < 0.5) & (flag == "n"), "o",
np.where((u10n < 0.5) &
((flag != "n") & (("u" in flag) == False) &
(("q" in flag) == False)),
flag+[","]+["o"], flag))
if (hum == None):
rh = np.ones(sst.shape)*80
elif (hum[0] == 'rh'):
rh = hum[1]
rh = np.where(rh > 100, np.nan, rh)
elif (hum[0] == 'Td'):
Td = hum[1] # dew point temperature (K)
Td = np.where(Td < 200, np.copy(Td)+CtoK, np.copy(Td))
T = np.where(T < 200, np.copy(T)+CtoK, np.copy(T))
esd = 611.21*np.exp(17.502*((Td-CtoK)/(Td-32.19)))
es = 611.21*np.exp(17.502*((T-CtoK)/(T-32.19)))
rh = 100*esd/es
rh = np.where(rh > 100, np.nan, rh)
res = np.zeros((39, len(spd)))
res[0][:] = tau
res[1][:] = sensible
res[2][:] = latent
res[3][:] = monob
res[4][:] = cd
res[5][:] = cdn
res[6][:] = ct
res[7][:] = ctn
res[8][:] = cq
res[9][:] = cqn
res[10][:] = tsrv
res[11][:] = tsr
res[12][:] = qsr
res[13][:] = usr
res[14][:] = psim
res[15][:] = psit
res[16][:] = psiq
res[17][:] = u10n
res[18][:] = t10n
res[19][:] = tv10n
res[20][:] = q10n
res[21][:] = zo
res[22][:] = zot
res[23][:] = zoq
res[24][:] = uref
res[25][:] = tref
res[26][:] = qref
res[27][:] = itera
res[28][:] = dter
res[29][:] = dqer
res[30][:] = dtwl
res[31][:] = qair
res[32][:] = qsea
res[33][:] = Rl
res[34][:] = Rs
res[35][:] = Rnl
res[36][:] = np.sqrt(np.power(wind, 2)-np.power(spd, 2))
res[37][:] = Rb
res[38][:] = rh
if (out == 0):
res[:, ind] = np.nan
# set missing values where data have non acceptable values
res = np.asarray([np.where(q10n < 0, np.nan,
res[i][:]) for i in range(39)])
# output with pandas
resAll = pd.DataFrame(data=res.T, index=range(len(spd)),
columns=["tau", "shf", "lhf", "L", "cd", "cdn", "ct",
"ctn", "cq", "cqn", "tsrv", "tsr", "qsr",
"usr", "psim", "psit","psiq", "u10n",
"t10n", "tv10n", "q10n", "zo", "zot", "zoq",
"uref", "tref", "qref", "iteration", "dter",
"dqer", "dtwl", "qair", "qsea", "Rl", "Rs",
"Rnl", "ug", "Rib", "rh"])
resAll["flag"] = flag
return resAll