AirSeaFluxCode.py 27.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
import numpy as np
import pandas as pd
import logging
from get_init import get_init
from hum_subs import (get_hum, gamma_moist)
from util_subs import (kappa, CtoK, get_heights)
from flux_subs import (cs_C35, cs_Beljaars, cs_ecmwf, wl_ecmwf,
                       get_gust, get_L, get_strs, psim_calc,
                       psit_calc, cdn_calc, cd_calc, ctcq_calc, ctcqn_calc)



def AirSeaFluxCode(spd, T, SST, lat=None, hum=None, P=None, hin=18, hout=10,
                   Rl=None, Rs=None, cskin=None, skin="C35", wl=0, gust=None,
                   meth="S80", qmeth="Buck2", tol=None, n=10, out=0, L=None):
    """
    Calculates turbulent surface fluxes using different parameterizations
    Calculates height adjusted values for spd, T, q

    Parameters
    ----------
        spd : float
            relative wind speed in m/s (is assumed as magnitude difference
            between wind and surface current vectors)
        T : float
            air temperature in K (will convert if < 200)
        SST : float
            sea surface temperature in K (will convert if < 200)
        lat : float
            latitude (deg), default 45deg
        hum : float
            humidity input switch 2x1 [x, values] default is relative humidity
            x='rh' : relative humidity in %
            x='q' : specific humidity (g/kg)
            x='Td' : dew point temperature (K)
        P : float
            air pressure (hPa), default 1013hPa
        hin : float
            sensor heights in m (array 3x1 or 3xn), default 18m
        hout : float
            output height, default is 10m
        Rl : float
            downward longwave radiation (W/m^2)
        Rs : float
            downward shortwave radiation (W/m^2)
        cskin : int
            0 switch cool skin adjustment off, else 1
            default is 1
        skin : str
            cool skin method option "C35", "ecmwf" or "Beljaars"
        wl : int
            warm layer correction default is 0, to switch on set to 1
        gust : int
            3x1 [x, beta, zi] x=1 to include the effect of gustiness, else 0
            beta gustiness parameter, beta=1 for UA, beta=1.2 for COARE
            zi PBL height (m) 600 for COARE, 1000 for UA and ecmwf, 800 default
            default for COARE [1, 1.2, 600]
            default for UA, ecmwf [1, 1, 1000]
            default else [1, 1.2, 800]
        meth : str
            "S80", "S88", "LP82", "YT96", "UA", "LY04", "C30", "C35",
            "ecmwf", "Beljaars"
        qmeth : str
            is the saturation evaporation method to use amongst
            "HylandWexler","Hardy","Preining","Wexler","GoffGratch","WMO",
            "MagnusTetens","Buck","Buck2","WMO2018","Sonntag","Bolton",
            "IAPWS","MurphyKoop"]
            default is Buck2
        tol : float
           4x1 or 7x1 [option, lim1-3 or lim1-6]
           option : 'flux' to set tolerance limits for fluxes only lim1-3
           option : 'ref' to set tolerance limits for height adjustment lim-1-3
           option : 'all' to set tolerance limits for both fluxes and height
                    adjustment lim1-6
           default is tol=['all', 0.01, 0.01, 1e-05, 1e-3, 0.1, 0.1]
        n : int
            number of iterations (defautl = 10)
        out : int
            set 0 to set points that have not converged to missing (default)
            set 1 to keep points
        L : str
           Monin-Obukhov length definition options
           "S80"  : default for S80, S88, LP82, YT96 and LY04
           "ecmwf" : following ecmwf (IFS Documentation cy46r1), default for
           ecmwf
    Returns
    -------
        res : array that contains
                       1. momentum flux       (N/m^2)
                       2. sensible heat       (W/m^2)
                       3. latent heat         (W/m^2)
                       4. Monin-Obhukov length (m)
                       5. drag coefficient (cd)
                       6. neutral drag coefficient (cdn)
                       7. heat exchange coefficient (ct)
                       8. neutral heat exchange coefficient (ctn)
                       9. moisture exhange coefficient (cq)
                       10. neutral moisture exchange coefficient (cqn)
                       11. star virtual temperatcure (tsrv)
                       12. star temperature (tsr)
                       13. star specific humidity (qsr)
                       14. star wind speed (usr)
                       15. momentum stability function (psim)
                       16. heat stability function (psit)
                       17. moisture stability function (psiq)
                       18. 10m neutral wind speed (u10n)
                       19. 10m neutral temperature (t10n)
                       20. 10m neutral virtual temperature (tv10n)
                       21. 10m neutral specific humidity (q10n)
                       22. surface roughness length (zo)
                       23. heat roughness length (zot)
                       24. moisture roughness length (zoq)
                       25. wind speed at reference height (uref)
                       26. temperature at reference height (tref)
                       27. specific humidity at reference height (qref)
                       28. number of iterations until convergence
                       29. cool-skin temperature depression (dter)
                       30. cool-skin humidity depression (dqer)
                       31. warm layer correction (dtwl)
                       32. specific humidity of air (qair)
                       33. specific humidity at sea surface (qsea)
                       34. downward longwave radiation (Rl)
                       35. downward shortwave radiation (Rs)
                       36. downward net longwave radiation (Rnl)
                       37. gust wind speed (ug)
                       38. Bulk Richardson number (Rib)
                       39. relative humidity (rh)
                       40. flag ("n": normal, "o": out of nominal range,
                                 "u": u10n<0, "q":q10n<0
                                 "m": missing, "l": Rib<-0.5 or Rib>0.2,
                                 "i": convergence fail at n)

    2021 / Author S. Biri
    """
    logging.basicConfig(filename='flux_calc.log', filemode="w",
                        format='%(asctime)s %(message)s',level=logging.INFO)
    logging.captureWarnings(True)
    #  check input values and set defaults where appropriate
    lat, hum, P, Rl, Rs, cskin, skin, wl, gust, tol, L, n = get_init(spd, T,
                                                                     SST, lat,
                                                                     hum, P,
                                                                     Rl, Rs,
                                                                     cskin,
                                                                     skin,
                                                                     wl, gust,
                                                                     L, tol, n,
                                                                     meth,
                                                                     qmeth)
    flag = np.ones(spd.shape, dtype="object")*"n"
    flag = np.where(np.isnan(spd+T+SST+lat+hum[1]+P+Rs), "m", flag)
    ref_ht = 10        # reference height
    h_in = get_heights(hin, len(spd))  # heights of input measurements/fields
    h_out = get_heights(hout, 1)       # desired height of output variables
    logging.info('method %s, inputs: lat: %s | P: %s | Rl: %s |'
                 ' Rs: %s | gust: %s | cskin: %s | L : %s', meth,
                 np.nanmedian(lat), np.round(np.nanmedian(P), 2),
                 np.round(np.nanmedian(Rl),2 ), np.round(np.nanmedian(Rs), 2),
                 gust, cskin, L)
    #  set up/calculate temperatures and specific humidities
    th = np.where(T < 200, (np.copy(T)+CtoK) *
                  np.power(1000/P,287.1/1004.67),
                  np.copy(T)*np.power(1000/P,287.1/1004.67))  # potential T
    sst = np.where(SST < 200, np.copy(SST)+CtoK, np.copy(SST))
    qair, qsea = get_hum(hum, T, sst, P, qmeth)
    Rb = np.empty(sst.shape)
    #lapse rate
    tlapse = gamma_moist(SST, T, qair/1000)
    Ta = np.where(T < 200, np.copy(T)+CtoK+tlapse*h_in[1],
                  np.copy(T)+tlapse*h_in[1])  # convert to Kelvin if needed
    logging.info('method %s and q method %s | qsea:%s, qair:%s', meth, qmeth,
                 np.round(np.nanmedian(qsea), 7),
                 np.round(np.nanmedian(qair), 7))
    if (np.all(np.isnan(qsea)) or np.all(np.isnan(qair))):
        print("qsea and qair cannot be nan")

    dt = Ta - sst
    dq = qair - qsea

    #  first guesses
    t10n, q10n = np.copy(Ta), np.copy(qair)
    tv10n = t10n*(1+0.6077*q10n)
    #  Zeng et al. 1998
    tv=th*(1+0.6077*qair)   # virtual potential T
    dtv=dt*(1+0.6077*qair)+0.6077*th*dq
    # ------------
    rho = P*100/(287.1*tv10n)
    lv = (2.501-0.00237*(sst-CtoK))*1e6
    cp = 1004.67*(1 + 0.00084*qsea)
    u10n = np.copy(spd)
    usr = 0.035*u10n
    cd10n = cdn_calc(u10n, usr, Ta, lat, meth)
    psim, psit, psiq = (np.zeros(spd.shape), np.zeros(spd.shape),
                        np.zeros(spd.shape))
    cd = cd_calc(cd10n, h_in[0], ref_ht, psim)
    tsr, tsrv = np.zeros(spd.shape), np.zeros(spd.shape)
    qsr = np.zeros(spd.shape)
    # cskin parameters
    tkt = 0.001*np.ones(T.shape)
    dter = np.ones(T.shape)*0.3
    dqer = dter*0.622*lv*qsea/(287.1*np.power(sst, 2))
    Rnl = 0.97*(5.67e-8*np.power(sst-0.3*cskin, 4)-Rl)
    Qs = 0.945*Rs
    dtwl = np.ones(T.shape)*0.3
    skt = np.copy(sst)
    # gustiness adjustment
    if (gust[0] == 1 and meth == "UA"):
        wind = np.where(dtv >= 0, np.where(spd > 0.1, spd, 0.1),
                        np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2)))
    elif (gust[0] == 1):
        wind = np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2))
    elif (gust[0] == 0):
        wind = np.copy(spd)
    # stars and roughness lengths
    usr = np.sqrt(cd*np.power(wind, 2))
    zo = 1e-4*np.ones(spd.shape)
    zot, zoq = 1e-4*np.ones(spd.shape), 1e-4*np.ones(spd.shape)
    ct10n = np.power(kappa, 2)/(np.log(h_in[0]/zo)*np.log(h_in[1]/zot))
    cq10n = np.power(kappa, 2)/(np.log(h_in[0]/zo)*np.log(h_in[2]/zoq))
    ct = np.power(kappa, 2)/((np.log(h_in[0]/zo)-psim) *
                             (np.log(h_in[1]/zot)-psit))
    cq = np.power(kappa, 2)/((np.log(h_in[0]/zo)-psim) *
                             (np.log(h_in[2]/zoq)-psiq))
    monob = -100*np.ones(spd.shape)  # Monin-Obukhov length
    tsr = (dt+dter*cskin-dtwl*wl)*kappa/(np.log(h_in[1]/zot) -
                                         psit_calc(h_in[1]/monob, meth))
    qsr = (dq+dqer*cskin)*kappa/(np.log(h_in[2]/zoq) -
                                 psit_calc(h_in[2]/monob, meth))
    # set-up to feed into iteration loop
    it, ind = 0, np.where(spd > 0)
    ii, itera = True, -1*np.ones(spd.shape)
    tau = 0.05*np.ones(spd.shape)
    sensible = 5*np.ones(spd.shape)
    latent = 65*np.ones(spd.shape)
    #  iteration loop
    while np.any(ii):
        it += 1
        if it > n:
            break
        if (tol[0] == 'flux'):
            old = np.array([np.copy(tau), np.copy(sensible), np.copy(latent)])
        elif (tol[0] == 'ref'):
            old = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n)])
        elif (tol[0] == 'all'):
            old = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n),
                            np.copy(tau), np.copy(sensible), np.copy(latent)])
        cd10n[ind] = cdn_calc(u10n[ind], usr[ind], Ta[ind], lat[ind], meth)
        if (np.all(np.isnan(cd10n))):
            break
            logging.info('break %s at iteration %s cd10n<0', meth, it)
        zo[ind] = ref_ht/np.exp(kappa/np.sqrt(cd10n[ind]))
        psim[ind] = psim_calc(h_in[0, ind]/monob[ind], meth)
        cd[ind] = cd_calc(cd10n[ind], h_in[0, ind], ref_ht, psim[ind])
        ct10n[ind], cq10n[ind] = ctcqn_calc(h_in[1, ind]/monob[ind],
                                            cd10n[ind], usr[ind], zo[ind],
                                            Ta[ind], meth)
        zot[ind] = ref_ht/(np.exp(np.power(kappa, 2) /
                           (ct10n[ind]*np.log(ref_ht/zo[ind]))))
        zoq[ind] = ref_ht/(np.exp(np.power(kappa, 2) /
                           (cq10n[ind]*np.log(ref_ht/zo[ind]))))
        psit[ind] = psit_calc(h_in[1, ind]/monob[ind], meth)
        psiq[ind] = psit_calc(h_in[2, ind]/monob[ind], meth)
        ct[ind], cq[ind] = ctcq_calc(cd10n[ind], cd[ind], ct10n[ind], cq10n[ind],
                                      h_in[:, ind], [ref_ht, ref_ht, ref_ht],
                                      psit[ind], psiq[ind])
        if (meth == "LY04"):
            cd = np.maximum(np.copy(cd), 1e-4)
            ct = np.maximum(np.copy(ct), 1e-4)
            cq = np.maximum(np.copy(cq), 1e-4)
            zo = np.minimum(np.copy(zo), 0.0025)
        usr[ind], tsr[ind], qsr[ind] = get_strs(h_in[:, ind], monob[ind],
                                                wind[ind], zo[ind], zot[ind],
                                                zoq[ind], dt[ind], dq[ind],
                                                dter[ind], dqer[ind], dtwl[ind],
                                                ct[ind], cq[ind], cskin, wl,
                                                meth)
        if ((cskin == 1) and (wl == 0)):
            if (skin == "C35"):
                dter[ind], dqer[ind], tkt[ind] = cs_C35(sst[ind], qsea[ind],
                                                        rho[ind], Rs[ind],
                                                        Rnl[ind],
                                                        cp[ind], lv[ind],
                                                        np.copy(tkt[ind]),
                                                        usr[ind], tsr[ind],
                                                        qsr[ind], lat[ind])
            elif (skin == "ecmwf"):
                dter[ind] = cs_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     sst[ind], lat[ind])
                dqer[ind] = (dter[ind]*0.622*lv[ind]*qsea[ind] /
                             (287.1*np.power(sst[ind], 2)))
            elif (skin == "Beljaars"):
                Qs[ind], dter[ind] = cs_Beljaars(rho[ind], Rs[ind], Rnl[ind],
                                                 cp[ind], lv[ind], usr[ind],
                                                 tsr[ind], qsr[ind], lat[ind],
                                                 np.copy(Qs[ind]))
                dqer = dter*0.622*lv*qsea/(287.1*np.power(sst, 2))
        elif ((cskin == 1) and (wl == 1)):
            if (skin == "C35"):
                dter[ind], dqer[ind], tkt[ind] = cs_C35(sst[ind], qsea[ind],
                                                        rho[ind], Rs[ind],
                                                        Rnl[ind],
                                                        cp[ind], lv[ind],
                                                        np.copy(tkt[ind]),
                                                        usr[ind], tsr[ind],
                                                        qsr[ind], lat[ind])
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
            elif (skin == "ecmwf"):
                dter[ind] = cs_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     sst[ind], lat[ind])
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
                dqer[ind] = (dter[ind]*0.622*lv[ind]*qsea[ind] /
                             (287.1*np.power(skt[ind], 2)))
            elif (skin == "Beljaars"):
                Qs[ind], dter[ind] = cs_Beljaars(rho[ind], Rs[ind], Rnl[ind],
                                                 cp[ind], lv[ind], usr[ind],
                                                 tsr[ind], qsr[ind], lat[ind],
                                                 np.copy(Qs[ind]))
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
                dqer = dter*0.622*lv*qsea/(287.1*np.power(skt, 2))
        else:
           dter[ind] = np.zeros(sst[ind].shape)
           dqer[ind] = np.zeros(sst[ind].shape)
           tkt[ind] = 0.001*np.ones(T[ind].shape)
        logging.info('method %s | dter = %s | dqer = %s | tkt = %s | Rnl = %s '
                     '| usr = %s | tsr = %s | qsr = %s', meth,
                     np.round(np.nanmedian(dter), 2),
                     np.round(np.nanmedian(dqer), 7),
                     np.round(np.nanmedian(tkt), 2),
                     np.round(np.nanmedian(Rnl), 2),
                     np.round(np.nanmedian(usr), 3),
                     np.round(np.nanmedian(tsr), 4),
                     np.round(np.nanmedian(qsr), 7))
        Rnl[ind] = 0.97*(5.67e-8*np.power(sst[ind] -
                          dter[ind]*cskin, 4)-Rl[ind])
        t10n[ind] = (Ta[ind] -
                     tsr[ind]/kappa*(np.log(h_in[1, ind]/ref_ht)-psit[ind]))
        q10n[ind] = (qair[ind] -
                     qsr[ind]/kappa*(np.log(h_in[2, ind]/ref_ht)-psiq[ind]))
        tv10n[ind] = t10n[ind]*(1+0.6077*q10n[ind])
        tsrv[ind], monob[ind], Rb[ind] = get_L(L, lat[ind], usr[ind], tsr[ind],
                                               qsr[ind], h_in[:, ind], Ta[ind],
                                               sst[ind]-dter[ind]*cskin+dtwl[ind]*wl,
                                               qair[ind], qsea[ind], wind[ind],
                                               np.copy(monob[ind]), psim[ind],
                                               meth)
        # sst[ind]-dter[ind]*cskin+dtwl[ind]*wl
        psim[ind] = psim_calc(h_in[0, ind]/monob[ind], meth)
        psit[ind] = psit_calc(h_in[1, ind]/monob[ind], meth)
        psiq[ind] = psit_calc(h_in[2, ind]/monob[ind], meth)
        if (gust[0] == 1 and meth == "UA"):
            wind[ind] = np.where(dtv[ind] >= 0, np.where(spd[ind] > 0.1,
                                  spd[ind], 0.1),
                                  np.sqrt(np.power(np.copy(spd[ind]), 2) +
                                  np.power(get_gust(gust[1], tv[ind], usr[ind],
                                  tsrv[ind], gust[2], lat[ind]), 2)))
                                  # Zeng et al. 1998 (20)
        elif (gust[0] == 1 and (meth == "C30" or meth == "C35")):
            wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) +
                                np.power(get_gust(gust[1], Ta[ind], usr[ind],
                                tsrv[ind], gust[2], lat[ind]), 2))
        elif (gust[0] == 1):
            wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) +
                                np.power(get_gust(gust[1], Ta[ind], usr[ind],
                                tsrv[ind], gust[2], lat[ind]), 2))
        elif (gust[0] == 0):
            wind[ind] = np.copy(spd[ind])
        u10n[ind] = wind[ind]-usr[ind]/kappa*(np.log(h_in[0, ind]/10) -
                                              psim[ind])
        #  usr[ind]/np.sqrt(cd10n[ind])
        if (it < 4): # make sure you allow small negative values convergence
            u10n = np.where(u10n < 0, 0.5, u10n)
        flag = np.where((u10n < 0) & (flag == "n"), "u",
                        np.where((u10n < 0) & (flag != "u"),
                                 flag+[","]+["u"], flag))
        u10n = np.where(u10n < 0, np.nan, u10n)
        itera[ind] = np.ones(1)*it
        sensible = -rho*cp*usr*tsr
        latent = -rho*lv*usr*qsr
        if (gust[0] == 1):
            tau = rho*np.power(usr, 2)*(spd/wind)
        elif (gust[0] == 0):
            tau = rho*np.power(usr, 2)
        if (tol[0] == 'flux'):
            new = np.array([np.copy(tau), np.copy(sensible), np.copy(latent)])
        elif (tol[0] == 'ref'):
            new = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n)])
        elif (tol[0] == 'all'):
            new = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n),
                            np.copy(tau), np.copy(sensible), np.copy(latent)])
        d = np.abs(new-old)
        if (tol[0] == 'flux'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
                            (d[2, :] > tol[3]))
        elif (tol[0] == 'ref'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
                            (d[2, :] > tol[3]))
        elif (tol[0] == 'all'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
                            (d[2, :] > tol[3])+(d[3, :] > tol[4]) +
                            (d[4, :] > tol[5])+(d[5, :] > tol[6]))
        if (ind[0].size == 0):
            ii = False
        else:
            ii = True
    itera[ind] = -1
    itera = np.where(itera > n, -1, itera)
    logging.info('method %s | # of iterations:%s', meth, it)
    logging.info('method %s | # of points that did not converge :%s \n', meth,
                  ind[0].size)
    # calculate output parameters
    rho = (0.34838*P)/(tv10n)
    t10n = t10n-(273.16+tlapse*ref_ht)
    # solve for zo from cd10n
    zo = ref_ht/np.exp(kappa/np.sqrt(cd10n))
    # adjust neutral cdn at any output height
    cdn = np.power(kappa/np.log(hout/zo), 2)
    cd = cd_calc(cdn, h_out[0], h_out[0], psim)
    # solve for zot, zoq from ct10n, cq10n
    zot = ref_ht/(np.exp(kappa**2/(ct10n*np.log(ref_ht/zo))))
    zoq = ref_ht/(np.exp(kappa**2/(cq10n*np.log(ref_ht/zo))))
    # adjust neutral ctn, cqn at any output height
    ctn =np.power(kappa, 2)/(np.log(h_out[0]/zo)*np.log(h_out[1]/zot))
    cqn =np.power(kappa, 2)/(np.log(h_out[0]/zo)*np.log(h_out[2]/zoq))
    ct, cq = ctcq_calc(cdn, cd, ctn, cqn, h_out, h_out, psit, psiq)
    uref = (spd-usr/kappa*(np.log(h_in[0]/h_out[0])-psim +
            psim_calc(h_out[0]/monob, meth)))
    tref = (Ta-tsr/kappa*(np.log(h_in[1]/h_out[1])-psit +
            psit_calc(h_out[0]/monob, meth)))
    tref = tref-(CtoK+tlapse*h_out[1])
    qref = (qair-qsr/kappa*(np.log(h_in[2]/h_out[2]) -
            psit+psit_calc(h_out[2]/monob, meth)))
    if (wl == 0):
        dtwl = np.zeros(T.shape) # reset to zero if not used
    flag = np.where((q10n < 0) & (flag == "n"), "q",
                    np.where((q10n < 0) & (flag != "n"), flag+[","]+["q"],
                             flag))
    flag = np.where(((Rb < -0.5) | (Rb > 0.2)) & (flag == "n"), "l",
                    np.where(((Rb < -0.5) | (Rb > 0.2)) &
                             ((flag != "n") & (("u" in flag) == False) &
                              (("q" in flag) == False)), flag+[","]+["l"], flag))
    flag = np.where((itera == -1) & (flag == "n"), "i",
                    np.where((itera == -1) &
                             ((flag != "n") & (("u" in flag) == False) &
                              (("q" in flag) == False)),
                             flag+[","]+["i"], flag))
    if (meth == "S80"):
        flag = np.where(((u10n < 6) | (u10n > 22)) & (flag == "n"), "o",
                        np.where(((u10n < 6) | (u10n > 22)) &
                                 ((flag != "n") & (("u" in flag) == False) &
                                  (("q" in flag) == False)),
                                 flag+[","]+["o"], flag))
    elif (meth == "LP82"):
        flag = np.where(((u10n < 3) | (u10n > 25)) & (flag == "n"), "o",
                        np.where(((u10n < 3) | (u10n > 25)) &
                                 ((flag != "n") & (("u" in flag) == False) &
                                  (("q" in flag) == False)),
                                 flag+[","]+["o"], flag))
    elif (meth == "YT96"):
        flag = np.where(((u10n < 3) | (u10n > 26)) & (flag == "n"), "o",
                        np.where(((u10n < 3) | (u10n > 26)) &
                                 ((flag != "n") & (("u" in flag) == False) &
                                  (("q" in flag) == False)),
                                 flag+[","]+["o"], flag))
    elif (meth == "UA"):
        flag = np.where((u10n > 18) & (flag == "n"), "o",
                        np.where((u10n > 18) &
                                 ((flag != "n") & (("u" in flag) == False) &
                                  (("q" in flag) == False)),
                                 flag+[","]+["o"], flag))
    elif (meth == "LY04"):
        flag = np.where((u10n < 0.5) & (flag == "n"), "o",
                        np.where((u10n < 0.5) &
                                 ((flag != "n") & (("u" in flag) == False) &
                                  (("q" in flag) == False)),
                                 flag+[","]+["o"], flag))
    if (hum == None):
        rh = np.ones(sst.shape)*80
    elif (hum[0] == 'rh'):
        rh = hum[1]
        rh = np.where(rh > 100, np.nan, rh)
    elif (hum[0] == 'Td'):
        Td = hum[1] # dew point temperature (K)
        Td = np.where(Td < 200, np.copy(Td)+CtoK, np.copy(Td))
        T = np.where(T < 200, np.copy(T)+CtoK, np.copy(T))
        esd = 611.21*np.exp(17.502*((Td-CtoK)/(Td-32.19)))
        es = 611.21*np.exp(17.502*((T-CtoK)/(T-32.19)))
        rh = 100*esd/es
        rh = np.where(rh > 100, np.nan, rh)

    res = np.zeros((39, len(spd)))
    res[0][:] = tau
    res[1][:] = sensible
    res[2][:] = latent
    res[3][:] = monob
    res[4][:] = cd
    res[5][:] = cdn
    res[6][:] = ct
    res[7][:] = ctn
    res[8][:] = cq
    res[9][:] = cqn
    res[10][:] = tsrv
    res[11][:] = tsr
    res[12][:] = qsr
    res[13][:] = usr
    res[14][:] = psim
    res[15][:] = psit
    res[16][:] = psiq
    res[17][:] = u10n
    res[18][:] = t10n
    res[19][:] = tv10n
    res[20][:] = q10n
    res[21][:] = zo
    res[22][:] = zot
    res[23][:] = zoq
    res[24][:] = uref
    res[25][:] = tref
    res[26][:] = qref
    res[27][:] = itera
    res[28][:] = dter
    res[29][:] = dqer
    res[30][:] = dtwl
    res[31][:] = qair
    res[32][:] = qsea
    res[33][:] = Rl
    res[34][:] = Rs
    res[35][:] = Rnl
    res[36][:] = np.sqrt(np.power(wind, 2)-np.power(spd, 2))
    res[37][:] = Rb
    res[38][:] = rh

    if (out == 0):
        res[:, ind] = np.nan
    # set missing values where data have non acceptable values
    res = np.asarray([np.where(q10n < 0, np.nan,
                               res[i][:]) for i in range(39)])
    # output with pandas
    resAll = pd.DataFrame(data=res.T, index=range(len(spd)),
                          columns=["tau", "shf", "lhf", "L", "cd", "cdn", "ct",
                                   "ctn", "cq", "cqn", "tsrv", "tsr", "qsr",
                                   "usr", "psim", "psit","psiq", "u10n",
                                   "t10n", "tv10n", "q10n", "zo", "zot", "zoq",
                                   "uref", "tref", "qref", "iteration", "dter",
                                   "dqer", "dtwl", "qair", "qsea", "Rl", "Rs",
                                   "Rnl", "ug", "Rib", "rh"])
    resAll["flag"] = flag
    return resAll