flux_subs.py 27.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
import numpy as np
from util_subs import (CtoK, kappa, gc, visc_air)

# ---------------------------------------------------------------------


def cdn_calc(u10n, Ta, Tp, lat, meth="S80"):
    """ Calculates neutral drag coefficient

    Parameters
    ----------
    u10n : float
        neutral 10m wind speed (m/s)
    Ta   : float
        air temperature (K)
    Tp   : float
        wave period
    lat : float
        latitude
    meth : str

    Returns
    -------
    cdn : float
    """
    cdn = np.zeros(Ta.shape)*np.nan
    if (meth == "S80"):
        cdn = np.where(u10n <= 3, (0.61+0.567/u10n)*0.001,
                       (0.61+0.063*u10n)*0.001)
    elif (meth == "LP82"):
        cdn = np.where((u10n < 11) & (u10n >= 4), 1.2*0.001,
                       np.where((u10n <= 25) & (u10n >= 11),
                       (0.49+0.065*u10n)*0.001, 1.14*0.001))
    elif (meth == "S88" or meth == "UA" or meth == "ERA5" or meth == "C30" or
          meth == "C35" or meth == "C40"):
        cdn = cdn_from_roughness(u10n, Ta, None, lat, meth)
    elif (meth == "YT96"):
        # for u<3 same as S80
        cdn = np.where((u10n < 6) & (u10n >= 3),
                       (0.29+3.1/u10n+7.7/u10n**2)*0.001,
                       np.where((u10n <= 26) & (u10n >= 6),
                       (0.60 + 0.070*u10n)*0.001, (0.61+0.567/u10n)*0.001))
    elif (meth == "LY04"):
        cdn = np.where(u10n >= 0.5,
                       (0.142+(2.7/u10n)+(u10n/13.09))*0.001, np.nan)
    else:
        print("unknown method cdn: "+meth)
    return cdn
# ---------------------------------------------------------------------


def cdn_from_roughness(u10n, Ta, Tp, lat, meth="S88"):
    """ Calculates neutral drag coefficient from roughness length

    Parameters
    ----------
    u10n : float
        neutral 10m wind speed (m/s)
    Ta   : float
        air temperature (K)
    Tp   : float
        wave period
    lat : float
        latitude
    meth : str

    Returns
    -------
    cdn : float
    """
    g, tol = gc(lat, None), 0.000001
    cdn, usr = np.zeros(Ta.shape), np.zeros(Ta.shape)
    cdnn = (0.61+0.063*u10n)*0.001
    zo, zc, zs = np.zeros(Ta.shape), np.zeros(Ta.shape), np.zeros(Ta.shape)
    for it in range(5):
        cdn = np.copy(cdnn)
        usr = np.sqrt(cdn*u10n**2)
        if (meth == "S88"):
            # Charnock roughness length (eq. 4 in Smith 88)
            zc = 0.011*np.power(usr, 2)/g
            #  smooth surface roughness length (eq. 6 in Smith 88)
            zs = 0.11*visc_air(Ta)/usr
            zo = zc + zs  #  eq. 7 & 8 in Smith 88
        elif (meth == "UA"):
            # valid for 0<u<18m/s # Zeng et al. 1998 (24)
            zo = 0.013*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr
        elif (meth == "C30"):
            a = 0.011*np.ones(Ta.shape)
            a = np.where(u10n > 10, 0.011+(u10n-10)/(18-10)*(0.018-0.011),
                         np.where(u10n > 18, 0.018, a))
            zo = a*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr
        elif (meth == "C35"):
            a = 0.011*np.ones(Ta.shape)
            # a = np.where(u10n > 19, 0.0017*19-0.0050,
            #             np.where((u10n > 7) & (u10n <= 18),
            #                       0.0017*u10n-0.0050, a))
            a = np.where(u10n > 19, 0.0017*19-0.0050, 0.0017*u10n-0.0050)
            zo = 0.11*visc_air(Ta)/usr+a*np.power(usr, 2)/g
        elif (meth == "C40"):
            a = 0.011*np.ones(Ta.shape)
            a = np.where(u10n > 22, 0.0016*22-0.0035, 0.0016*u10n-0.0035)
            zo = a*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr # surface roughness
        elif (meth == "ERA5"):
            # eq. (3.26) p.38 over sea IFS Documentation cy46r1
            zo = 0.018*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr
        else:
            print("unknown method for cdn_from_roughness "+meth)
        cdnn = (kappa/np.log(10/zo))**2
    cdn = np.where(np.abs(cdnn-cdn) < tol, cdnn, np.nan)
    return cdn
# ---------------------------------------------------------------------


def cd_calc(cdn, height, ref_ht, psim):
    """ Calculates drag coefficient at reference height

    Parameters
    ----------
    cdn : float
        neutral drag coefficient
    height : float
        original sensor height (m)
    ref_ht : float
        reference height (m)
    psim : float
        momentum stability function

    Returns
    -------
    cd : float
    """
    cd = (cdn/np.power(1+(np.sqrt(cdn)*(np.log(height/ref_ht)-psim))/kappa, 2))
    return cd
# ---------------------------------------------------------------------


def ctcqn_calc(zol, cdn, u10n, zo, Ta, meth="S80"):
    """ Calculates neutral heat and moisture exchange coefficients

    Parameters
    ----------
    zol  : float
        height over MO length
    cdn  : float
        neutral drag coefficient
    u10n : float
        neutral 10m wind speed (m/s)
    zo   : float
        surface roughness (m)
    Ta   : float
        air temperature (K)
    meth : str

    Returns
    -------
    ctn : float
        neutral heat exchange coefficient
    cqn : float
        neutral moisture exchange coefficient
    """
    if (meth == "S80" or meth == "S88" or meth == "YT96"):
        cqn = np.ones(Ta.shape)*1.20*0.001  # from S88
        ctn = np.ones(Ta.shape)*1.00*0.001
    elif (meth == "LP82"):
        cqn = np.where((zol <= 0) & (u10n > 4) & (u10n < 14), 1.15*0.001,
                       1*0.001)
        ctn = np.where((zol <= 0) & (u10n > 4) & (u10n < 25), 1.13*0.001,
                       0.66*0.001)
    elif (meth == "LY04"):
        cqn = 34.6*0.001*np.sqrt(cdn)
        ctn = np.where(zol <= 0, 32.7*0.001*np.sqrt(cdn), 18*0.001*np.sqrt(cdn))
    elif (meth == "UA"):
        usr = np.sqrt(cdn*np.power(u10n, 2))
        # Zeng et al. 1998 (25)
        re=usr*zo/visc_air(Ta)
        zoq = zo/np.exp(2.67*np.power(re, 1/4)-2.57)
        zot = zoq
        cqn = np.where((u10n > 0.5) & (u10n < 18), np.power(kappa, 2) /
                       (np.log(10/zo)*np.log(10/zoq)), np.nan)
        ctn = np.where((u10n > 0.5) & (u10n < 18), np.power(kappa, 2) /
                       (np.log(10/zo)*np.log(10/zoq)), np.nan)
    elif (meth == "C30"):
        usr = np.sqrt(cdn*np.power(u10n, 2))
        rr = zo*usr/visc_air(Ta)
        zoq = np.where(5e-5/np.power(rr, 0.6) > 1.15e-4, 1.15e-4,
                       5e-5/np.power(rr, 0.6))  # moisture roughness
        zot=zoq  # temperature roughness
        cqn = kappa**2/np.log(10/zo)/np.log(10/zoq)
        ctn = kappa**2/np.log(10/zo)/np.log(10/zot)
    elif (meth == "C35"):
        usr = np.sqrt(cdn*np.power(u10n, 2))
        rr = zo*usr/visc_air(Ta)
        zoq = np.where(5.8e-5/np.power(rr, 0.72) > 1.6e-4, 1.6e-4,
                       5.8e-5/np.power(rr, 0.72))  # moisture roughness
        zot=zoq  # temperature roughness
        cqn = kappa**2/np.log(10/zo)/np.log(10/zoq)
        ctn = kappa**2/np.log(10/zo)/np.log(10/zot)
    elif (meth == "C40"):
        usr = np.sqrt(cdn*np.power(u10n, 2))
        rr = zo*usr/visc_air(Ta)
        zot = np.where(1.0e-4/np.power(rr, 0.55) > 2.4e-4/np.power(rr, 1.2),
                       2.4e-4/np.power(rr, 1.2),
                       1.0e-4/np.power(rr, 0.55)) # temperature roughness
        zoq = np.where(2.0e-5/np.power(rr,0.22) > 1.1e-4/np.power(rr,0.9),
                       1.1e-4/np.power(rr,0.9), 2.0e-5/np.power(rr,0.22))
        # moisture roughness determined by the CLIMODE, GASEX and CBLAST data
#        zoq = np.where(5e-5/np.power(rr, 0.6) > 1.15e-4, 1.15e-4,
#                       5e-5/np.power(rr, 0.6))  # moisture roughness as in C30
        cqn = kappa**2/np.log(10/zo)/np.log(10/zoq)
        ctn = kappa**2/np.log(10/zo)/np.log(10/zot)
    elif (meth == "ERA5"):
        # eq. (3.26) p.38 over sea IFS Documentation cy46r1
        usr = np.sqrt(cdn*np.power(u10n, 2))
        zot = 0.40*visc_air(Ta)/usr
        zoq = 0.62*visc_air(Ta)/usr
        cqn = kappa**2/np.log(10/zo)/np.log(10/zoq)
        ctn = kappa**2/np.log(10/zo)/np.log(10/zot)
    else:
        print("unknown method ctcqn: "+meth)
    return ctn, cqn
# ---------------------------------------------------------------------


def ctcq_calc(cdn, cd, ctn, cqn, ht, hq, ref_ht, psit, psiq):
    """ Calculates heat and moisture exchange coefficients at reference height

    Parameters
    ----------
    cdn : float
        neutral drag coefficient
    cd  : float
        drag coefficient at reference height
    ctn : float
        neutral heat exchange coefficient
    cqn : float
        neutral moisture exchange coefficient
    h_t : float
        original temperature sensor height (m)
    h_q : float
        original moisture sensor height (m)
    ref_ht : float
        reference height (m)
    psit : float
        heat stability function
    psiq : float
        moisture stability function

    Returns
    -------
    ct : float
       heat exchange coefficient
    cq : float
       moisture exchange coefficient
    """
    ct = (ctn*np.sqrt(cd/cdn) /
          (1+ctn*((np.log(ht/ref_ht)-psit)/(kappa*np.sqrt(cdn)))))
    cq = (cqn*np.sqrt(cd/cdn) /
          (1+cqn*((np.log(hq/ref_ht)-psiq)/(kappa*np.sqrt(cdn)))))
    return ct, cq
# ---------------------------------------------------------------------


def get_stabco(meth="S80"):
    """ Gives the coefficients \\alpha, \\beta, \\gamma for stability functions

    Parameters
    ----------
    meth : str

    Returns
    -------
    coeffs : float
    """
    alpha, beta, gamma = 0, 0, 0
    if (meth == "S80" or meth == "S88" or meth == "LY04" or
        meth == "UA" or meth == "ERA5" or meth == "C30" or meth == "C35" or
        meth == "C40"):
        alpha, beta, gamma = 16, 0.25, 5  # Smith 1980, from Dyer (1974)
    elif (meth == "LP82"):
        alpha, beta, gamma = 16, 0.25, 7
    elif (meth == "YT96"):
        alpha, beta, gamma = 20, 0.25, 5
    else:
        print("unknown method stabco: "+meth)
    coeffs = np.zeros(3)
    coeffs[0] = alpha
    coeffs[1] = beta
    coeffs[2] = gamma
    return coeffs
# ---------------------------------------------------------------------


def psim_calc(zol, meth="S80"):
    """ Calculates momentum stability function

    Parameters
    ----------
    zol : float
        height over MO length
    meth : str

    Returns
    -------
    psim : float
    """
    if (meth == "ERA5"):
        psim = psim_era5(zol)
    elif (meth == "C30" or meth == "C35" or meth == "C40"):
        psim = psiu_26(zol, meth)
    else:
        psim = np.where(zol < 0, psim_conv(zol, meth),
                        psim_stab(zol, meth))
    return psim
# ---------------------------------------------------------------------


def psit_calc(zol, meth="S80"):
    """ Calculates heat stability function

    Parameters
    ----------
    zol : float
        height over MO length
    meth : str
        parameterisation method

    Returns
    -------
    psit : float
    """
    if (meth == "ERA5"):
        psit = np.where(zol < 0, psi_conv(zol, meth),
                        psi_era5(zol))
    elif (meth == "C30" or meth == "C35" or meth == "C40"):
        psit = psit_26(zol)
    else:
        psit = np.where(zol < 0, psi_conv(zol, meth),
                        psi_stab(zol, meth))
    return psit
# ---------------------------------------------------------------------


def psi_era5(zol):
    """ Calculates heat stability function for stable conditions
        for method ERA5

    Parameters
    ----------
    zol : float
        height over MO length

    Returns
    -------
    psit : float
    """
    # eq (3.22) p. 37 IFS Documentation cy46r1
    a, b, c, d = 1, 2/3, 5, 0.35
    psit = -b*(zol-c/d)*np.exp(-d*zol)-np.power(1+(2/3)*a*zol, 1.5)-(b*c)/d+1
    return psit
# ---------------------------------------------------------------------


def psit_26(zol):
    """ Computes temperature structure function as in C35

    Parameters
    ----------
    zol : float
        height over MO length

    Returns
    -------
    psi : float
    """
    b, d = 2/3, 0.35
    dzol = np.where(d*zol > 50, 50, d*zol)
    psi = np.where(zol > 0,-(np.power(1+b*zol, 1.5)+b*(zol-14.28) *
                             np.exp(-dzol)+8.525), np.nan)
    psik = np.where(zol < 0, 2*np.log((1+np.sqrt(1-15*zol))/2), np.nan)
    psic = np.where(zol < 0, 1.5*np.log((1+np.power(1-34.15*zol, 1/3) +
                    np.power(1-34.15*zol, 2/3))/3)-np.sqrt(3) *
                    np.arctan(1+2*np.power(1-34.15*zol, 1/3))/np.sqrt(3) +
                    4*np.arctan(1)/np.sqrt(3), np.nan)
    f = np.power(zol, 2)/(1+np.power(zol, 2))
    psi = np.where(zol < 0, (1-f)*psik+f*psic, psi)
    return psi
# ---------------------------------------------------------------------


def psi_conv(zol, meth):
    """ Calculates heat stability function for unstable conditions

    Parameters
    ----------
    zol : float
        height over MO length
    meth : str
        parameterisation method

    Returns
    -------
    psit : float
    """
    coeffs = get_stabco(meth)
    alpha, beta = coeffs[0], coeffs[1]
    xtmp = np.power(1-alpha*zol, beta)
    psit = 2*np.log((1+np.power(xtmp, 2))*0.5)
    return psit
# ---------------------------------------------------------------------


def psi_stab(zol, meth):
    """ Calculates heat stability function for stable conditions

    Parameters
    ----------
    zol : float
        height over MO length
    meth : str
        parameterisation method

    Returns
    -------
    psit : float
    """
    coeffs = get_stabco(meth)
    gamma = coeffs[2]
    psit = -gamma*zol
    return psit
# ---------------------------------------------------------------------


def psim_era5(zol):
    """ Calculates momentum stability function for method ERA5

    Parameters
    ----------
    zol : float
        height over MO length

    Returns
    -------
    psim : float
    """
    # eq (3.20, 3.22) p. 37 IFS Documentation cy46r1
    coeffs = get_stabco("ERA5")
    alpha, beta = coeffs[0], coeffs[1]
    xtmp = np.power(1-alpha*zol, beta)
    a, b, c, d = 1, 2/3, 5, 0.35
    psim = np.where(zol < 0, np.pi/2-2*np.arctan(xtmp) +
                    np.log((np.power(1+xtmp, 2)*(1+np.power(xtmp, 2)))/8),
                    -b*(zol-c/d)*np.exp(-d*zol)-a*zol-(b*c)/d)
    return psim
# ---------------------------------------------------------------------


def psiu_26(zol, meth):
    """ Computes velocity structure function C35

    Parameters
    ----------
    zol : float
        height over MO length

    Returns
    -------
    psi : float
    """
    if (meth == "C30"):
        dzol = np.where(0.35*zol > 50, 50, 0.35*zol) # stable
        psi = np.where(zol > 0, -((1+zol)+0.6667*(zol-14.28)*np.exp(-dzol) +
                                  8.525), np.nan)
        x = np.where(zol < 0, np.power(1-15*zol, 0.25), np.nan)
        psik = np.where(zol < 0, 2*np.log((1+x)/2)+np.log((1+np.power(x, 2)) /
                        2)-2*np.arctan(x)+2*np.arctan(1), np.nan)
        x = np.where(zol < 0, np.power(1-10.15*zol, 0.3333), np.nan)
        psic = np.where(zol < 0, 1.5*np.log((1+x+np.power(x, 2))/3) -
                        np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3)) +
                        4*np.arctan(1)/np.sqrt(3), np.nan)
        f = np.power(zol, 2)/(1+np.power(zol, 2))
        psi = np.where(zol < 0, (1-f)*psik+f*psic, psi)
    elif (meth == "C35" or meth == "C40"):
        dzol = np.where(0.35*zol > 50, 50, 0.35*zol)  # stable
        a, b, c, d = 0.7, 3/4, 5, 0.35
        psi = np.where(zol > 0, -(a*zol+b*(zol-c/d)*np.exp(-dzol)+b*c/d),
                       np.nan)
        x = np.where(zol < 0, np.power(1-15*zol, 0.25), np.nan)
        psik = np.where(zol < 0, 2*np.log((1+x)/2)+np.log((1+x**2)/2) -
                        2*np.arctan(x)+2*np.arctan(1), np.nan)
        x = np.where(zol < 0, np.power(1-10.15*zol, 0.3333), np.nan)
        psic = np.where(zol < 0, 1.5*np.log((1+x+np.power(x, 2))/3) -
                        np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3)) +
                        4*np.arctan(1)/np.sqrt(3), np.nan)
        f = np.power(zol, 2)/(1+np.power(zol, 2))
        psi = np.where(zol < 0, (1-f)*psik+f*psic, psi)
    return psi
#------------------------------------------------------------------------------



def psim_conv(zol, meth):
    """ Calculates momentum stability function for unstable conditions

    Parameters
    ----------
    zol : float
        height over MO length
    meth : str
        parameterisation method

    Returns
    -------
    psim : float
    """
    coeffs = get_stabco(meth)
    alpha, beta = coeffs[0], coeffs[1]
    xtmp = np.power(1-alpha*zol, beta)
    psim = (2*np.log((1+xtmp)*0.5)+np.log((1+np.power(xtmp, 2))*0.5) -
            2*np.arctan(xtmp)+np.pi/2)
    return psim
# ---------------------------------------------------------------------


def psim_stab(zol, meth):
    """ Calculates momentum stability function for stable conditions

    Parameters
    ----------
    zol : float
        height over MO length
    meth : str
        parameterisation method

    Returns
    -------
    psim : float
    """
    coeffs = get_stabco(meth)
    gamma = coeffs[2]
    psim = -gamma*zol
    return psim
# ---------------------------------------------------------------------


def get_skin(sst, qsea, rho, Rl, Rs, Rnl, cp, lv, tkt, usr, tsr, qsr, lat):
    """ Computes cool skin

    Parameters
    ----------
    sst : float
        sea surface temperature ($^\circ$\,C)
    qsea : float
        specific humidity over sea (g/kg)
    rho : float
        density of air (kg/m^3)
    Rl : float
        downward longwave radiation (W/m^2)
    Rs : float
        downward shortwave radiation (W/m^2)
    Rnl : float
        upwelling IR radiation (W/m^2)
    cp : float
       specific heat of air at constant pressure
    lv : float
       latent heat of vaporization
    tkt : float
       cool skin thickness
    usr : float
       friction velocity
    tsr : float
       star temperature
    qsr : float
       star humidity
    lat : float
       latitude

    Returns
    -------
    dter : float
    dqer : float

    """
    # coded following Saunders (1967) with lambda = 6
    g = gc(lat, None)
    if (np.nanmin(sst) > 200):  # if sst in Kelvin convert to Celsius
        sst = sst-CtoK
    # ************  cool skin constants  *******
    # density of water, specific heat capacity of water, water viscosity,
    # thermal conductivity of water
    rhow, cpw, visw, tcw = 1022, 4000, 1e-6, 0.6
    Al = 2.1e-5*np.power(sst+3.2, 0.79)
    be = 0.026
    bigc = 16*g*cpw*np.power(rhow*visw, 3)/(np.power(tcw, 2)*np.power(rho, 2))
    wetc = 0.622*lv*qsea/(287.1*np.power(sst+273.16, 2))
    Rns = 0.945*Rs  # albedo correction
    hsb = -rho*cp*usr*tsr
    hlb = -rho*lv*usr*qsr
    qout = Rnl+hsb+hlb
    dels = Rns*(0.065+11*tkt-6.6e-5/tkt*(1-np.exp(-tkt/8.0e-4)))
    qcol = qout-dels
    alq = Al*qcol+be*hlb*cpw/lv
    xlamx = 6*np.ones(sst.shape)
    xlamx = np.where(alq > 0, 6/(1+(bigc*alq/usr**4)**0.75)**0.333, 6)
    tkt = np.where(alq > 0, xlamx*visw/(np.sqrt(rho/rhow)*usr),
                   np.where(xlamx*visw/(np.sqrt(rho/rhow)*usr) > 0.01, 0.01,
                   xlamx*visw/(np.sqrt(rho/rhow)*usr)))
    dter = qcol*tkt/tcw
    dqer = wetc*dter
    return dter, dqer, tkt
# ---------------------------------------------------------------------


def get_gust(beta, Ta, usr, tsrv, zi, lat):
    """ Computes gustiness

    Parameters
    ----------
    beta : float
        constant
    Ta : float
        air temperature (K)
    usr : float
        friction velocity (m/s)
    tsrv : float
        star virtual temperature of air (K)
    zi : int
        scale height of the boundary layer depth (m)
    lat : float
        latitude

    Returns
    -------
    ug : float
    """
    if (np.nanmax(Ta) < 200):  # convert to K if in Celsius
        Ta = Ta+273.16
    g = gc(lat, None)
    Bf = (-g/Ta)*usr*tsrv
    ug = np.ones(np.shape(Ta))*0.2
    ug = np.where(Bf > 0, beta*np.power(Bf*zi, 1/3), 0.2)
    return ug
# ---------------------------------------------------------------------


def get_L(L, lat, usr, tsr, qsr, t10n, tv10n, qair, h_in, T, Ta, th, tv, sst,
          dt, dtv, dq, zo, wind, monob, meth):
    """
    calculates Monin-Obukhov length and virtual star temperature

    Parameters
    ----------
    L : int
        Monin-Obukhov length definition options
           "S80"  : default for S80, S88, LP82, YT96 and LY04
           "ERA5" : following ERA5 (IFS Documentation cy46r1), default for ERA5
    lat : float
        latitude
    usr : float
        friction wind speed (m/s)
    tsr : float
        star temperature (K)
    qsr : float
        star specific humidity (g/kg)
    t10n : float
        neutral temperature at 10m (K)
    tv10n : float
        neutral virtual temperature at 10m (K)
    qair : float
        air specific humidity (g/kg)
    h_in : float
        sensor heights (m)
    T : float
        air temperature (K)
    Ta : float
        air temperature (K)
    th : float
        potential temperature (K)
    tv : float
        virtual temperature (K)
    sst : float
        sea surface temperature (K)
    dt : float
        temperature difference (K)
    dq : float
        specific humidity difference (g/kg)
    wind : float
        wind speed (m/s)
    monob : float
        Monin-Obukhov length from previous iteration step (m)
    meth : str
        bulk parameterisation method option: "S80", "S88", "LP82", "YT96", "UA",
        "LY04", "C30", "C35", "C40", "ERA5"

    Returns
    -------
    tsrv : float
        virtual star temperature (K)
    monob : float
        M-O length (m)

    """
    g = gc(lat)
    if (L == "S80"):
        tsrv = tsr+0.61*t10n*qsr
        monob = ((tv10n*np.power(usr, 2))/(g*kappa*tsrv))
        monob = np.where(np.fabs(monob) < 1, np.where(monob < 0, -1, 1), monob)
     elif (L == "ERA5"):
        tsrv = tsr+0.61*t10n*qsr
        Rb = ((g*h_in[0]*((2*dt)/(Ta+sst-g*h_in[0])+0.61*dq)) /
              np.power(wind, 2))
        zo = (0.11*visc_air(Ta)/usr+0.018*np.power(usr, 2)/g)
        zot = 0.40*visc_air(Ta)/usr
        zol = (Rb*(np.power(np.log((h_in[0]+zo)/zo)-psim_calc((h_in[0]+zo) /
                                                              monob, meth) +
                            psim_calc(zo/monob, meth), 2) /
                   (np.log((h_in[0]+zo)/zot) -
                    psit_calc((h_in[0]+zo)/monob, meth) +
                    psit_calc(zot/monob, meth))))
        monob = h_in[0]/zol
    return tsrv, monob
#------------------------------------------------------------------------------


def get_strs(h_in, monob, wind, zo, zot, zoq, dt, dq, dter, dqer, ct, cq,
             cskin, meth):
    """
    calculates star wind speed, temperature and specific humidity

    Parameters
    ----------
    h_in : float
        sensor heights (m)
    monob : float
        M-O length (m)
    wind : float
        wind speed (m/s)
    zo : float
        momentum roughness length (m)
    zot : float
        temperature roughness length (m)
    zoq : float
        moisture roughness length (m)
    dt : float
        temperature difference (K)
    dq : float
        specific humidity difference (g/kg)
    dter : float
        cskin temperature adjustment (K)
    dqer : float
        cskin q adjustment (g/kg)
    ct : float
        temperature exchange coefficient
    cq : float
        moisture exchange coefficient
    cskin : int
        cool skin adjustment switch
    meth : str
        bulk parameterisation method option: "S80", "S88", "LP82", "YT96", "UA",
        "LY04", "C30", "C35", "C40", "ERA5"

    Returns
    -------
    usr : float
        friction wind speed (m/s)
    tsr : float
        star temperature (K)
    qsr : float
        star specific humidity (g/kg)

    """
    if (meth == "UA"):
        usr = np.where(h_in[0]/monob <= -1.574, kappa*wind /
                       (np.log(-1.574*monob/zo)-psim_calc(-1.574, meth) +
                        psim_calc(zo/monob, meth) +
                        1.14*(np.power(-h_in[0]/monob, 1/3) -
                        np.power(1.574, 1/3))),
                       np.where(h_in[0]/monob < 0, kappa*wind /
                                (np.log(h_in[0]/zo) -
                                 psim_calc(h_in[0]/monob, meth) +
                                 psim_calc(zo/monob, meth)),
                                np.where(h_in[0]/monob <= 1, kappa*wind /
                                         (np.log(h_in[0]/zo) +
                                          5*h_in[0]/monob-5*zo/monob),
                                         kappa*wind/(np.log(monob/zo)+5 -
                                                     5*zo/monob +
                                                     5*np.log(h_in[0]/monob) +
                                                     h_in[0]/monob-1))))
                                # Zeng et al. 1998 (7-10)
        tsr = np.where(h_in[1]/monob < -0.465, kappa*(dt+dter*cskin) /
                       (np.log((-0.465*monob)/zot) -
                        psit_calc(-0.465, meth)+0.8*(np.power(0.465, -1/3) -
                        np.power(-h_in[1]/monob, -1/3))),
                       np.where(h_in[1]/monob < 0, kappa*(dt+dter*cskin) /
                                (np.log(h_in[1]/zot) -
                                 psit_calc(h_in[1]/monob, meth) +
                                 psit_calc(zot/monob, meth)),
                                np.where(h_in[1]/monob <= 1,
                                         kappa*(dt+dter*cskin) /
                                         (np.log(h_in[1]/zot) +
                                          5*h_in[1]/monob-5*zot/monob),
                                         kappa*(dt+dter*cskin) /
                                         (np.log(monob/zot)+5 -
                                          5*zot/monob+5*np.log(h_in[1]/monob) +
                                          h_in[1]/monob-1))))
                                # Zeng et al. 1998 (11-14)
        qsr = np.where(h_in[2]/monob < -0.465, kappa*(dq+dqer*cskin) /
                       (np.log((-0.465*monob)/zoq) -
                        psit_calc(-0.465, meth)+psit_calc(zoq/monob, meth) +
                        0.8*(np.power(0.465, -1/3) -
                             np.power(-h_in[2]/monob, -1/3))),
                       np.where(h_in[2]/monob < 0,
                                kappa*(dq+dqer*cskin)/(np.log(h_in[1]/zot) -
                                psit_calc(h_in[2]/monob, meth) +
                                psit_calc(zoq/monob, meth)),
                                np.where(h_in[2]/monob <= 1,
                                         kappa*(dq+dqer*cskin) /
                                         (np.log(h_in[1]/zoq)+5*h_in[2]/monob -
                                          5*zoq/monob),
                                         kappa*(dq+dqer*cskin)/
                                         (np.log(monob/zoq)+5-5*zoq/monob +
                                          5*np.log(h_in[2]/monob) +
                                          h_in[2]/monob-1))))
    elif (meth == "C30" or meth == "C35" or meth == "C40"):
        usr = (wind*kappa/(np.log(h_in[0]/zo)-psiu_26(h_in[0]/monob, meth)))
        tsr = ((dt+dter*cskin)*(kappa/(np.log(h_in[1]/zot) -
                                       psit_26(h_in[1]/monob))))
        qsr = ((dq+dqer*cskin)*(kappa/(np.log(h_in[2]/zoq) -
                                       psit_26(h_in[2]/monob))))
    else:
        usr = (wind*kappa/(np.log(h_in[0]/zo)-psim_calc(h_in[0]/monob, meth)))
        tsr = ct*wind*(dt+dter*cskin)/usr
        qsr = cq*wind*(dq+dqer*cskin)/usr
    return usr, tsr, qsr
# ---------------------------------------------------------------------