1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
import numpy as np
from util_subs import (kappa, visc_air)
# ---------------------------------------------------------------------
def cdn_calc(u10n, usr, Ta, grav, meth):
"""
Calculates neutral drag coefficient
Parameters
----------
u10n : float
neutral 10m wind speed [m/s]
usr : float
friction velocity [m/s]
Ta : float
air temperature [K]
grav : float
gravity [m/s^2]
meth : str
Returns
-------
cdn : float
zo : float
"""
cdn = np.zeros(Ta.shape)*np.nan
if (meth == "S80"): # eq. 14 Smith 1980
cdn = (0.61+0.063*u10n)*0.001
elif (meth == "LP82"):
# Large & Pond 1981 u10n <11m/s & eq. 21 Large & Pond 1982
cdn = np.where(u10n < 11, 1.2*0.001, (0.49+0.065*u10n)*0.001)
elif (meth == "S88" or meth == "UA" or meth == "ecmwf" or meth == "C30" or
meth == "C35" or meth == "Beljaars"): # or meth == "C40"
cdn = cdn_from_roughness(u10n, usr, Ta, grav, meth)
elif (meth == "YT96"):
# convert usr in eq. 21 to cdn to expand for low wind speeds
cdn = np.power((0.10038+u10n*2.17e-3+np.power(u10n, 2)*2.78e-3 -
np.power(u10n, 3)*4.4e-5)/u10n, 2)
elif (meth == "NCAR"): # eq. 11 Large and Yeager 2009
cdn = np.where(u10n > 0.5, (0.142+2.7/u10n+u10n/13.09 -
3.14807e-10*np.power(u10n, 6))*1e-3,
(0.142+2.7/0.5+0.5/13.09 -
3.14807e-10*np.power(0.5, 6))*1e-3)
cdn = np.where(u10n > 33, 2.34e-3, np.copy(cdn))
cdn = np.maximum(np.copy(cdn), 0.1e-3)
else:
raise ValueError("unknown method cdn: "+meth)
zo = 10/np.exp(kappa/np.sqrt(cdn))
return cdn, zo
# ---------------------------------------------------------------------
def cdn_from_roughness(u10n, usr, Ta, grav, meth):
"""
Calculates neutral drag coefficient from roughness length
Parameters
----------
u10n : float
neutral 10m wind speed [m/s]
usr : float
friction velocity [m/s]
Ta : float
air temperature [K]
grav : float [m/s]
gravity
meth : str
Returns
-------
cdn : float
"""
#cdn = (0.61+0.063*u10n)*0.001
zo, zc, zs = np.zeros(Ta.shape), np.zeros(Ta.shape), np.zeros(Ta.shape)
for it in range(5):
if (meth == "S88"):
# Charnock roughness length (eq. 4 in Smith 88)
zc = 0.011*np.power(usr, 2)/grav
# smooth surface roughness length (eq. 6 in Smith 88)
zs = 0.11*visc_air(Ta)/usr
zo = zc + zs # eq. 7 & 8 in Smith 88
elif (meth == "UA"):
# valid for 0<u<18m/s # Zeng et al. 1998 (24)
zo = 0.013*np.power(usr, 2)/grav+0.11*visc_air(Ta)/usr
elif (meth == "C30"): # eq. 25 Fairall et al. 1996a
a = 0.011*np.ones(Ta.shape)
a = np.where(u10n > 10, 0.011+(u10n-10)*(0.018-0.011)/(18-10),
np.where(u10n > 18, 0.018, a))
zo = a*np.power(usr, 2)/grav+0.11*visc_air(Ta)/usr
elif (meth == "C35"): # eq.6-11 Edson et al. (2013)
zo = (0.11*visc_air(Ta)/usr +
np.minimum(0.0017*19-0.0050, 0.0017*u10n-0.0050) *
np.power(usr, 2)/grav)
elif ((meth == "ecmwf" or meth == "Beljaars")):
# eq. (3.26) p.38 over sea IFS Documentation cy46r1
zo = 0.018*np.power(usr, 2)/grav+0.11*visc_air(Ta)/usr
else:
raise ValueError("unknown method for cdn_from_roughness "+meth)
cdn = np.power(kappa/np.log(10/zo), 2)
return cdn
# ---------------------------------------------------------------------
def cd_calc(cdn, hin, hout, psim):
"""
Calculates drag coefficient at reference height
Parameters
----------
cdn : float
neutral drag coefficient
hin : float
wind speed height [m]
hout : float
reference height [m]
psim : float
momentum stability function
Returns
-------
cd : float
"""
cd = (cdn/np.power(1+(np.sqrt(cdn)*(np.log(hin/hout)-psim))/kappa, 2))
return cd
# ---------------------------------------------------------------------
def ctqn_calc(corq, zol, cdn, usr, zo, Ta, meth):
"""
Calculates neutral heat and moisture exchange coefficients
Parameters
----------
corq : flag to select
"ct" or "cq"
zol : float
height over MO length
cdn : float
neutral drag coefficient
usr : float
friction velocity [m/s]
zo : float
surface roughness [m]
Ta : float
air temperature [K]
meth : str
Returns
-------
ctqn : float
neutral heat exchange coefficient
zotq : float
roughness length for t or q
"""
if (meth == "S80" or meth == "S88" or meth == "YT96"):
cqn = np.ones(Ta.shape)*1.20*0.001 # from S88
ctn = np.ones(Ta.shape)*1.00*0.001
zot = 10/(np.exp(np.power(kappa, 2) / (ctn*np.log(10/zo))))
zoq = 10/(np.exp(np.power(kappa, 2) / (cqn*np.log(10/zo))))
elif (meth == "LP82"):
cqn = np.where((zol <= 0), 1.15*0.001, 1*0.001)
ctn = np.where((zol <= 0), 1.13*0.001, 0.66*0.001)
zot = 10/(np.exp(np.power(kappa, 2) / (ctn*np.log(10/zo))))
zoq = 10/(np.exp(np.power(kappa, 2) / (cqn*np.log(10/zo))))
elif (meth == "NCAR"):
cqn = np.maximum(34.6*0.001*np.sqrt(cdn), 0.1e-3)
ctn = np.maximum(np.where(zol <= 0, 32.7*0.001*np.sqrt(cdn),
18*0.001*np.sqrt(cdn)), 0.1e-3)
zot = 10/(np.exp(np.power(kappa, 2) / (ctn*np.log(10/zo))))
zoq = 10/(np.exp(np.power(kappa, 2) / (cqn*np.log(10/zo))))
elif (meth == "UA"):
# Zeng et al. 1998 (25)
rr = usr*zo/visc_air(Ta)
zoq = zo/np.exp(2.67*np.power(rr, 1/4)-2.57)
zot = np.copy(zoq)
cqn = np.power(kappa, 2)/(np.log(10/zo)*np.log(10/zoq))
ctn = np.power(kappa, 2)/(np.log(10/zo)*np.log(10/zoq))
elif (meth == "C30"):
rr = zo*usr/visc_air(Ta)
zoq = np.minimum(5e-5/np.power(rr, 0.6), 1.15e-4) # moisture roughness
zot = np.copy(zoq) # temperature roughness
cqn = np.power(kappa, 2)/np.log(10/zo)/np.log(10/zoq)
ctn = np.power(kappa, 2)/np.log(10/zo)/np.log(10/zot)
elif (meth == "C35"):
rr = zo*usr/visc_air(Ta)
zoq = np.minimum(5.8e-5/np.power(rr, 0.72), 1.6e-4) # moisture roughness
zot = np.copy(zoq) # temperature roughness
cqn = np.power(kappa, 2)/np.log(10/zo)/np.log(10/zoq)
ctn = np.power(kappa, 2)/np.log(10/zo)/np.log(10/zot)
elif (meth == "ecmwf" or meth == "Beljaars"):
# eq. (3.26) p.38 over sea IFS Documentation cy46r1
zot = 0.40*visc_air(Ta)/usr
zoq = 0.62*visc_air(Ta)/usr
cqn = np.power(kappa, 2)/np.log(10/zo)/np.log(10/zoq)
ctn = np.power(kappa, 2)/np.log(10/zo)/np.log(10/zot)
else:
raise ValueError("unknown method ctqn: "+meth)
if corq == "ct":
ctqn = ctn
zotq = zot
elif corq == "cq":
ctqn = cqn
zotq = zoq
else:
raise ValueError("unknown flag - should be ct or cq: "+corq)
return ctqn, zotq
# ---------------------------------------------------------------------
# ---------------------------------------------------------------------
def ctq_calc(cdn, cd, ctqn, hin, hout, psitq):
"""
Calculates heat and moisture exchange coefficients at reference height
Parameters
----------
cdn : float
neutral drag coefficient
cd : float
drag coefficient at reference height
ctqn : float
neutral heat or moisture exchange coefficient
hin : float
original temperature or humidity sensor height [m]
hout : float
reference height [m]
psitq : float
heat or moisture stability function
Returns
-------
ctq : float
heat or moisture exchange coefficient
"""
ctq = (ctqn*np.sqrt(cd/cdn) /
(1+ctqn*((np.log(hin/hout)-psitq)/(kappa*np.sqrt(cdn)))))
return ctq
# ---------------------------------------------------------------------
def get_stabco(meth):
"""
Gives the coefficients \\alpha, \\beta, \\gamma for stability functions
Parameters
----------
meth : str
Returns
-------
coeffs : float
"""
alpha, beta, gamma = 0, 0, 0
if (meth == "S80" or meth == "S88" or meth == "NCAR" or
meth == "UA" or meth == "ecmwf" or meth == "C30" or
meth == "C35" or meth == "Beljaars"):
alpha, beta, gamma = 16, 0.25, 5 # Smith 1980, from Dyer (1974)
elif (meth == "LP82"):
alpha, beta, gamma = 16, 0.25, 7
elif (meth == "YT96"):
alpha, beta, gamma = 20, 0.25, 5
else:
raise ValueError("unknown method stabco: "+meth)
coeffs = np.zeros(3)
coeffs[0] = alpha
coeffs[1] = beta
coeffs[2] = gamma
return coeffs
# ---------------------------------------------------------------------
def psim_calc(zol, meth):
"""
Calculates momentum stability function
Parameters
----------
zol : float
height over MO length
meth : str
Returns
-------
psim : float
"""
if (meth == "ecmwf"):
psim = psim_ecmwf(zol)
elif (meth == "C30" or meth == "C35"):
psim = psiu_26(zol, meth)
elif (meth == "Beljaars"): # Beljaars (1997) eq. 16, 17
psim = np.where(zol < 0, psim_conv(zol, meth), psi_Bel(zol))
else:
psim = np.where(zol < 0, psim_conv(zol, meth),
psim_stab(zol, meth))
return psim
# ---------------------------------------------------------------------
def psit_calc(zol, meth):
"""
Calculates heat stability function
Parameters
----------
zol : float
height over MO length
meth : str
parameterisation method
Returns
-------
psit : float
"""
if (meth == "ecmwf"):
psit = np.where(zol < 0, psi_conv(zol, meth),
psi_ecmwf(zol))
elif (meth == "C30" or meth == "C35"):
psit = psit_26(zol)
elif (meth == "Beljaars"): # Beljaars (1997) eq. 16, 17
psit = np.where(zol < 0, psi_conv(zol, meth), psi_Bel(zol))
else:
psit = np.where(zol < 0, psi_conv(zol, meth),
psi_stab(zol, meth))
return psit
# ---------------------------------------------------------------------
def psi_Bel(zol):
"""
Calculates momentum/heat stability function
Parameters
----------
zol : float
height over MO length
meth : str
parameterisation method
Returns
-------
psit : float
"""
a, b, c, d = 0.7, 0.75, 5, 0.35
psi = -(a*zol+b*(zol-c/d)*np.exp(-d*zol)+b*c/d)
return psi
# ---------------------------------------------------------------------
def psi_ecmwf(zol):
"""
Calculates heat stability function for stable conditions
for method ecmwf
Parameters
----------
zol : float
height over MO length
Returns
-------
psit : float
"""
# eq (3.22) p. 37 IFS Documentation cy46r1
a, b, c, d = 1, 2/3, 5, 0.35
psit = -b*(zol-c/d)*np.exp(-d*zol)-np.power(1+(2/3)*a*zol, 1.5)-(b*c)/d+1
return psit
# ---------------------------------------------------------------------
def psit_26(zol):
"""
Computes temperature structure function as in C35
Parameters
----------
zol : float
height over MO length
Returns
-------
psi : float
"""
b, d = 2/3, 0.35
dzol = np.minimum(d*zol, 50)
psi = -1*((1+b*zol)**1.5+b*(zol-14.28)*np.exp(-dzol)+8.525)
k = np.where(zol < 0)
x = np.sqrt(1-15*zol[k])
psik = 2*np.log((1+x)/2)
x = np.power(1-34.15*zol[k], 1/3)
psic = (1.5*np.log((1+x+np.power(x, 2))/3)-np.sqrt(3) *
np.arctan((1+2*x)/np.sqrt(3))+4*np.arctan(1)/np.sqrt(3))
f = np.power(zol[k], 2)/(1+np.power(zol[k], 2))
psi[k] = (1-f)*psik+f*psic
return psi
# ---------------------------------------------------------------------
def psi_conv(zol, meth):
"""
Calculates heat stability function for unstable conditions
Parameters
----------
zol : float
height over MO length
meth : str
parameterisation method
Returns
-------
psit : float
"""
coeffs = get_stabco(meth)
alpha, beta = coeffs[0], coeffs[1]
xtmp = np.power(1-alpha*zol, beta)
psit = 2*np.log((1+np.power(xtmp, 2))*0.5)
return psit
# ---------------------------------------------------------------------
def psi_stab(zol, meth):
"""
Calculates heat stability function for stable conditions
Parameters
----------
zol : float
height over MO length
meth : str
parameterisation method
Returns
-------
psit : float
"""
coeffs = get_stabco(meth)
gamma = coeffs[2]
psit = -gamma*zol
return psit
# ---------------------------------------------------------------------
def psim_ecmwf(zol):
"""
Calculates momentum stability function for method ecmwf
Parameters
----------
zol : float
height over MO length
Returns
-------
psim : float
"""
# eq (3.20, 3.22) p. 37 IFS Documentation cy46r1
coeffs = get_stabco("ecmwf")
alpha, beta = coeffs[0], coeffs[1]
xtmp = np.power(1-alpha*zol, beta)
a, b, c, d = 1, 2/3, 5, 0.35
psim = np.where(zol < 0, np.pi/2-2*np.arctan(xtmp) +
np.log((np.power(1+xtmp, 2)*(1+np.power(xtmp, 2)))/8),
-b*(zol-c/d)*np.exp(-d*zol)-a*zol-(b*c)/d)
return psim
# ---------------------------------------------------------------------
def psiu_26(zol, meth):
"""
Computes velocity structure function C35
Parameters
----------
zol : float
height over MO length
Returns
-------
psi : float
"""
if (meth == "C30"):
dzol = np.minimum(0.35*zol, 50) # stable
psi = -1*((1+zol)+0.6667*(zol-14.28)*np.exp(-dzol)+8.525)
k = np.where(zol < 0) # unstable
x = (1-15*zol[k])**0.25
psik = (2*np.log((1+x)/2)+np.log((1+x*x)/2)-2*np.arctan(x) +
2*np.arctan(1))
x = (1-10.15*zol[k])**(1/3)
psic = (1.5*np.log((1+x+x*x)/3) -
np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3)) +
4*np.arctan(1)/np.sqrt(3))
f = zol[k]**2/(1+zol[k]**2)
psi[k] = (1-f)*psik+f*psic
elif (meth == "C35"): # or meth == "C40"
dzol = np.minimum(50, 0.35*zol) # stable
a, b, c, d = 0.7, 3/4, 5, 0.35
psi = -1*(a*zol+b*(zol-c/d)*np.exp(-dzol)+b*c/d)
k = np.where(zol < 0) # unstable
x = np.power(1-15*zol[k], 1/4)
psik = 2*np.log((1+x)/2)+np.log((1+x*x)/2)-2*np.arctan(x)+2*np.arctan(1)
x = np.power(1-10.15*zol[k], 1/3)
psic = (1.5*np.log((1+x+np.power(x, 2))/3)-np.sqrt(3) *
np.arctan((1+2*x)/np.sqrt(3))+4*np.arctan(1)/np.sqrt(3))
f = np.power(zol[k], 2)/(1+np.power(zol[k], 2))
psi[k] = (1-f)*psik+f*psic
return psi
#------------------------------------------------------------------------------
def psim_conv(zol, meth):
"""
Calculates momentum stability function for unstable conditions
Parameters
----------
zol : float
height over MO length
meth : str
parameterisation method
Returns
-------
psim : float
"""
coeffs = get_stabco(meth)
alpha, beta = coeffs[0], coeffs[1]
xtmp = np.power(1-alpha*zol, beta)
psim = (2*np.log((1+xtmp)*0.5)+np.log((1+np.power(xtmp, 2))*0.5) -
2*np.arctan(xtmp)+np.pi/2)
return psim
# ---------------------------------------------------------------------
def psim_stab(zol, meth):
"""
Calculates momentum stability function for stable conditions
Parameters
----------
zol : float
height over MO length
meth : str
parameterisation method
Returns
-------
psim : float
"""
coeffs = get_stabco(meth)
gamma = coeffs[2]
psim = -gamma*zol
return psim
# ---------------------------------------------------------------------
def get_gust(beta, Ta, usr, tsrv, zi, grav):
"""
Computes gustiness
Parameters
----------
beta : float
constant
Ta : float
air temperature [K]
usr : float
friction velocity [m/s]
tsrv : float
star virtual temperature of air [K]
zi : int
scale height of the boundary layer depth [m]
grav : float
gravity
Returns
-------
ug : float [m/s]
"""
if (np.nanmax(Ta) < 200): # convert to K if in Celsius
Ta = Ta+273.16
# minus sign to allow cube root
Bf = (-grav/Ta)*usr*tsrv
ug = np.ones(np.shape(Ta))*0.2
ug = np.where(Bf > 0, beta*np.power(Bf*zi, 1/3), 0.2)
return ug
# ---------------------------------------------------------------------
def get_strs(hin, monob, wind, zo, zot, zoq, dt, dq, cd, ct, cq, meth):
"""
calculates star wind speed, temperature and specific humidity
Parameters
----------
hin : float
sensor heights [m]
monob : float
M-O length [m]
wind : float
wind speed [m/s]
zo : float
momentum roughness length [m]
zot : float
temperature roughness length [m]
zoq : float
moisture roughness length [m]
dt : float
temperature difference [K]
dq : float
specific humidity difference [g/kg]
ct : float
temperature exchange coefficient
cq : float
moisture exchange coefficient
meth : str
bulk parameterisation method option: "S80", "S88", "LP82", "YT96", "UA",
"NCAR", "C30", "C35", "ecmwf", "Beljaars"
Returns
-------
usr : float
friction wind speed [m/s]
tsr : float
star temperature [K]
qsr : float
star specific humidity [g/kg]
"""
if (meth == "UA"):
# Zeng et al. 1998
# away from extremes UA follows e.g. S80
usr = wind*np.power(cd, 1/2)
tsr = ct*wind*dt/usr
qsr = cq*wind*dq/usr
# momentum
hol0 = hin[0]/np.copy(monob)
# very unstable (Zeng et al. 1998 eq 7)
usr = np.where(hol0 <= -1.574, wind*kappa / (np.log(-1.574*monob/zo)-psim_calc(-1.574, meth) + psim_calc(zo/monob, meth) + 1.14*(np.power(-hin[0]/monob, 1/3) - np.power(1.574, 1/3))), usr)
# very stable (Zeng et al. 1998 eq 10)
usr = np.where(hol0 > 1, wind*kappa/(np.log(monob/zo)+5 - 5*zo/monob + 5*np.log(hin[0]/monob) + hin[0]/monob-1), usr)
# temperature
hol1 = hin[1]/np.copy(monob)
# very unstable (Zeng et al. 1998 eq 11)
tsr = np.where(hol1 < -0.465, kappa*dt / (np.log((-0.465*monob)/zot) - psit_calc(-0.465, meth)+0.8*(np.power(0.465, -1/3) - np.power(-hin[1]/monob, -1/3))), tsr)
# very stable (Zeng et al. 1998 eq 14)
tsr = np.where(hol1 > 1, kappa*(dt) / (np.log(monob/zot)+5 - 5*zot/monob+5*np.log(hin[1]/monob) + hin[1]/monob-1), tsr)
# humidity
hol2 = hin[2]/monob
# very unstable (Zeng et al. 1998 eq 11)
qsr = np.where(hol2 < -0.465, kappa*dq / (np.log((-0.465*monob)/zoq) - psit_calc(-0.465, meth)+psit_calc(zoq/monob, meth) + 0.8*(np.power(0.465, -1/3) - np.power(-hin[2]/monob, -1/3))), qsr)
# very stable (Zeng et al. 1998 eq 14)
qsr = np.where(hol2 > 1, kappa*dq / (np.log(monob/zoq)+5-5*zoq/monob + 5*np.log(hin[2]/monob) + hin[2]/monob-1), qsr)
else:
usr = wind*np.power(cd, 1/2)
tsr = ct*wind*dt/usr
qsr = cq*wind*dq/usr
return usr, tsr, qsr
# ---------------------------------------------------------------------
# --------------------------------------------------------------------------------
# --------------------------------------------------------------------------------
# ---------------------------------------------------------------------
def get_tsrv(tsr, qsr, Ta, qair):
"""
calculates virtual star temperature
Parameters
----------
tsr : float
star temperature (K)
qsr : float
star specific humidity (g/kg)
Ta : float
air temperature (K)
qair : float
air specific humidity (g/kg)
Returns
-------
tsrv : float
virtual star temperature (K)
"""
# as in aerobulk One_on_L in mod_phymbl.f90
tsrv = tsr*(1+0.6077*qair)+0.6077*Ta*qsr
return tsrv
# ---------------------------------------------------------------------
def get_Rb(grav, usr, hin_u, hin_t, tv, dtv, wind, monob, meth):
"""
calculates bulk Richardson number
Parameters
----------
grav : float
acceleration due to gravity (m/s2)
usr : float
friction wind speed (m/s)
hin_u : float
u sensor height (m)
hin_t : float
t sensor height (m)
tv : float
virtual temperature (K)
dtv : float
virtual temperature difference, air and sea (K)
wind : float
wind speed (m/s)
monob : float
Monin-Obukhov length from previous iteration step (m)
psim : float
momentum stability function
meth : str
bulk parameterisation method option: "S80", "S88", "LP82", "YT96",
"UA", "NCAR", "C30", "C35", "ecmwf", "Beljaars"
Returns
-------
Rb : float
Richardson number
"""
# now input dtv
#tvs = sst*(1+0.6077*qsea) # virtual SST
#dtv = tv - tvs # virtual air - sea temp. diff
# adjust wind to t measurement height
uz = (wind-usr/kappa*(np.log(hin_u/hin_t)-psim_calc(hin_u/monob, meth) +
psim_calc(hin_t/monob, meth)))
Rb = grav*dtv*hin_t/(tv*uz*uz)
return Rb
# ---------------------------------------------------------------------
def get_LRb(Rb, hin_t, monob, zo, zot, meth):
"""
calculates Monin-Obukhov length following ecmwf (IFS Documentation cy46r1)
default for methods ecmwf and Beljaars
Parameters
----------
Rb : float
Richardson number
hin_t : float
t sensor height (m)
monob : float
Monin-Obukhov length from previous iteration step (m)
zo : float
surface roughness (m)
zot : float
temperature roughness length (m)
meth : str
bulk parameterisation method option: "S80", "S88", "LP82", "YT96",
"UA", "NCAR", "C30", "C35", "ecmwf", "Beljaars"
Returns
-------
monob : float
M-O length (m)
"""
zol = (Rb*(np.power(np.log((hin_t+zo)/zo)-psim_calc((hin_t+zo) /
monob, meth) + psim_calc(zo/monob, meth), 2) /
(np.log((hin_t+zo)/zot) -
psit_calc((hin_t+zo)/monob, meth) +
psit_calc(zot/monob, meth))))
monob = hin_t/zol
return monob
# ---------------------------------------------------------------------
def get_Ltsrv(tsrv, grav, tv, usr):
"""
calculates Monin-Obukhov length from tsrv
Parameters
----------
tsrv : float
virtual star temperature (K)
grav : float
acceleration due to gravity (m/s2)
tv : float
virtual temperature (K)
usr : float
friction wind speed (m/s)
Returns
-------
monob : float
M-O length (m)
"""
#tmp = (g*kappa*tsrv /
# np.maximum(np.power(usr, 2)*Ta*(1+0.6077*qair), 1e-9))
#tmp = np.minimum(np.abs(tmp), 200)*np.sign(tmp)
#monob = 1/np.copy(tmp)
tsrv = np.maximum(np.abs(tsrv), 1e-9)*np.sign(tsrv)
monob = (np.power(usr, 2)*tv)/(grav*kappa*tsrv)
return monob
# ---------------------------------------------------------------------