1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
"""
example of running AirSeaFluxCode with
1. R/V data (data_all.csv) or
2. one day era5 hourly data (era5_r360x180.nc)
compute fluxes
output NetCDF4
and statistics in stats.txt
@author: sbiri
"""
#%% import packages
import matplotlib.pyplot as plt
import netCDF4 as nc
import numpy as np
import pandas as pd
from AirSeaFluxCode import AirSeaFluxCode
import time
from tabulate import tabulate
#%%
def reject_outliers(data, m=2):
x = np.copy(data)
x = np.where(np.abs(x - np.nanmean(x)) < m*np.nanstd(x),
x, np.nan)
return x
def toy_ASFC(inF, outF, gustIn, cskinIn, tolIn, meth):
"""
Parameters
----------
inF : str
input filename either data_all.csv or era5_r360x180.nc
outF : str
output filename
gustIn : float
gustiness option e.g. [1, 1.2, 800]
cskinIn : int
cool skin option input 0 or 1
tolIn : float
tolerance input option e.g. ['all', 0.01, 0.01, 5e-05, 0.01, 1, 1]
meth : str
parametrisation method option
Returns
-------
res : float
AirSeaFluxCode output
lon : float
longitude from input netCDF file
lat : float
latitude from input netCDF file
"""
if (inF == "data_all.csv"):
#%% load data_all
inDt = pd.read_csv("data_all.csv")
date = np.asarray(inDt["Date"])
lon = np.asarray(inDt["Longitude"])
lat = np.asarray(inDt["Latitude"])
spd = np.asarray(inDt["Wind speed"])
t = np.asarray(inDt["Air temperature"])
sst = np.asarray(inDt["SST"])
rh = np.asarray(inDt["RH"])
p = np.asarray(inDt["P"])
sw = np.asarray(inDt["Rs"])
hu = np.asarray(inDt["zu"])
ht = np.asarray(inDt["zt"])
hin = np.array([hu, ht, ht])
del hu, ht, inDt
#%% run AirSeaFluxCode
res = AirSeaFluxCode(spd, t, sst, lat=lat, hum=['rh', rh], P=p,
hin=hin, Rs=sw, tol=tolIn, gust=gustIn,
cskin=cskinIn, meth=meth, L="ecmwf", n=30)
#%% delete variables
del spd, t, sst, rh, p, sw, hin
elif (inF == 'era5_r360x180.nc'):
#%% load era5_r360x180.nc
fid = nc.Dataset(inF)
lon = np.array(fid.variables["lon"])
lat = np.array(fid.variables["lat"])
T = np.array(fid.variables["t2m"])
tim = np.array(fid.variables["time"])
Td = np.array(fid.variables["d2m"])
sst = np.array(fid.variables["sst"])
sst = np.where(sst < -100, np.nan, sst)
p = np.array(fid.variables["msl"])/100 # to set hPa
lw = np.array(fid.variables["strd"])/60/60
sw = np.array(fid.variables["ssrd"])/60/60
u = np.array(fid.variables["u10"])
v = np.array(fid.variables["v10"])
lsm = np.array(fid.variables["lsm"])
fid.close()
spd = np.sqrt(np.power(u, 2)+np.power(v, 2))
del u, v, fid
lsm = np.where(lsm > 0, np.nan, 1) # reverse 0 on land 1 over ocean
hin = np.array([10, 2, 2])
latIn = np.tile(lat, (len(lon), 1)).T.reshape(len(lon)*len(lat))
date = np.copy(tim)
#%% run AirSeaFluxCode
res = np.zeros((len(tim),len(lon)*len(lat), 36))
# reshape input and run code
for x in range(len(tim)):
a = AirSeaFluxCode(spd.reshape(len(tim), len(lon)*len(lat))[x, :],
T.reshape(len(tim), len(lon)*len(lat))[x, :],
sst.reshape(len(tim), len(lon)*len(lat))[x, :],
lat=latIn,
hum=['Td', Td.reshape(len(tim), len(lon)*len(lat))[x, :]],
P=p.reshape(len(tim), len(lon)*len(lat))[x, :],
hin=hin,
Rs=sw.reshape(len(tim), len(lon)*len(lat))[x, :],
Rl=lw.reshape(len(tim), len(lon)*len(lat))[x, :],
gust=gustIn, cskin=cskinIn, tol=tolIn, qmeth='WMO',
meth=meth, n=30, L="ecmwf")
res[x, :, :] = a.T
del a
if (outF[-3:] == '.nc'):
if (inF == 'era5_r360x180.nc'):
#%% save NetCDF4
fid = nc.Dataset(outF,'w', format='NETCDF4')
fid.createDimension('lon', len(lon))
fid.createDimension('lat', len(lat))
fid.createDimension('time', None)
longitude = fid.createVariable('lon', 'f4', 'lon')
latitude = fid.createVariable('lat', 'f4', 'lat')
Date = fid.createVariable('Date', 'i4', 'time')
tau = fid.createVariable('tau', 'f4', ('time','lat','lon'))
sensible = fid.createVariable('shf', 'f4', ('time','lat','lon'))
latent = fid.createVariable('lhf', 'f4', ('time','lat','lon'))
monob = fid.createVariable('MO', 'f4', ('time','lat','lon'))
cd = fid.createVariable('cd', 'f4', ('time','lat','lon'))
cdn = fid.createVariable('cdn', 'f4', ('time','lat','lon'))
ct = fid.createVariable('ct', 'f4', ('time','lat','lon'))
ctn = fid.createVariable('ctn', 'f4', ('time','lat','lon'))
cq = fid.createVariable('cq', 'f4', ('time','lat','lon'))
cqn = fid.createVariable('cqn', 'f4', ('time','lat','lon'))
tsrv = fid.createVariable('tsrv', 'f4', ('time','lat','lon'))
tsr = fid.createVariable('tsr', 'f4', ('time','lat','lon'))
qsr = fid.createVariable('qsr', 'f4', ('time','lat','lon'))
usr = fid.createVariable('usr', 'f4', ('time','lat','lon'))
psim = fid.createVariable('psim', 'f4', ('time','lat','lon'))
psit = fid.createVariable('psit', 'f4', ('time','lat','lon'))
psiq = fid.createVariable('psiq', 'f4', ('time','lat','lon'))
u10n = fid.createVariable('u10n', 'f4', ('time','lat','lon'))
t10n = fid.createVariable('t10n', 'f4', ('time','lat','lon'))
tv10n = fid.createVariable('tv10n', 'f4', ('time','lat','lon'))
q10n = fid.createVariable('q10n', 'f4', ('time','lat','lon'))
zo = fid.createVariable('zo', 'f4', ('time','lat','lon'))
zot = fid.createVariable('zot', 'f4', ('time','lat','lon'))
zoq = fid.createVariable('zoq', 'f4', ('time','lat','lon'))
urefs = fid.createVariable('uref', 'f4', ('time','lat','lon'))
trefs = fid.createVariable('tref', 'f4', ('time','lat','lon'))
qrefs = fid.createVariable('qref', 'f4', ('time','lat','lon'))
itera = fid.createVariable('iter', 'i4', ('time','lat','lon'))
dter = fid.createVariable('dter', 'f4', ('time','lat','lon'))
dqer = fid.createVariable('dqer', 'f4', ('time','lat','lon'))
dtwl = fid.createVariable('dtwl', 'f4', ('time','lat','lon'))
qair = fid.createVariable('qair', 'f4', ('time','lat','lon'))
qsea = fid.createVariable('qsea', 'f4', ('time','lat','lon'))
Rl = fid.createVariable('Rl', 'f4', ('time','lat','lon'))
Rs = fid.createVariable('Rs', 'f4', ('time','lat','lon'))
Rnl = fid.createVariable('Rnl', 'f4', ('time','lat','lon'))
longitude[:] = lon
latitude[:] = lat
Date[:] = tim
tau[:] = res[:, :, 0].reshape((len(tim), len(lat), len(lon)))*lsm
sensible[:] = res[:, :, 1].reshape((len(tim), len(lat), len(lon)))*lsm
latent[:] = res[:, :, 2].reshape((len(tim), len(lat), len(lon)))*lsm
monob[:] = res[:, :, 3].reshape((len(tim), len(lat), len(lon)))*lsm
cd[:] = res[:, :, 4].reshape((len(tim), len(lat), len(lon)))*lsm
cdn[:] = res[:, :, 5].reshape((len(tim), len(lat), len(lon)))*lsm
ct[:] = res[:, :, 6].reshape((len(tim), len(lat), len(lon)))*lsm
ctn[:] = res[:, :, 7].reshape((len(tim), len(lat), len(lon)))*lsm
cq[:] = res[:, :, 8].reshape((len(tim), len(lat), len(lon)))*lsm
cqn[:] = res[:, :, 9].reshape((len(tim), len(lat), len(lon)))*lsm
tsrv[:] = res[:, :, 10].reshape((len(tim), len(lat), len(lon)))*lsm
tsr[:] = res[:, :, 11].reshape((len(tim), len(lat), len(lon)))*lsm
qsr[:] = res[:, :, 12].reshape((len(tim), len(lat), len(lon)))*lsm
usr[:] = res[:, :, 13].reshape((len(tim), len(lat), len(lon)))*lsm
psim[:] = res[:, :, 14].reshape((len(tim), len(lat), len(lon)))*lsm
psit[:] = res[:, :, 15].reshape((len(tim), len(lat), len(lon)))*lsm
psiq[:] = res[:, :, 16].reshape((len(tim), len(lat), len(lon)))*lsm
u10n[:] = res[:, :, 17].reshape((len(tim), len(lat), len(lon)))*lsm
t10n[:] = res[:, :, 18].reshape((len(tim), len(lat), len(lon)))*lsm
tv10n[:] = res[:, :, 19].reshape((len(tim), len(lat), len(lon)))*lsm
q10n[:] = res[:, :, 20].reshape((len(tim), len(lat), len(lon)))*lsm
zo[:] = res[:, :, 21].reshape((len(tim), len(lat), len(lon)))*lsm
zot[:] = res[:, :, 22].reshape((len(tim), len(lat), len(lon)))*lsm
zoq[:] = res[:, :, 23].reshape((len(tim), len(lat), len(lon)))*lsm
urefs[:] = res[:, :, 24].reshape((len(tim), len(lat), len(lon)))*lsm
trefs[:] = res[:, :, 25].reshape((len(tim), len(lat), len(lon)))*lsm
qrefs[:] = res[:, :, 26].reshape((len(tim), len(lat), len(lon)))*lsm
itera[:] = res[:, :, 27].reshape((len(tim), len(lat), len(lon)))*lsm
dter[:] = res[:, :, 28].reshape((len(tim), len(lat), len(lon)))*lsm
dqer[:] = res[:, :, 29].reshape((len(tim), len(lat), len(lon)))*lsm
dtwl[:] = res[:, :, 30].reshape((len(tim), len(lat), len(lon)))*lsm
qair[:] = res[:, :, 31].reshape((len(tim), len(lat), len(lon)))*lsm
qsea[:] = res[:, :, 32].reshape((len(tim), len(lat), len(lon)))*lsm
Rl = res[:, :, 33].reshape((len(tim), len(lat), len(lon)))
Rs = res[:, :, 34].reshape((len(tim), len(lat), len(lon)))
Rnl = res[:, :, 35].reshape((len(tim), len(lat), len(lon)))
longitude.long_name = 'Longitude'
longitude.units = 'degrees East'
latitude.long_name = 'Latitude'
latitude.units = 'degrees North'
Date.long_name = "calendar date"
Date.units = "YYYYMMDD UTC"
tau.long_name = 'Wind stress'
tau.units = 'N/m^2'
sensible.long_name = 'Sensible heat fluxe'
sensible.units = 'W/m^2'
latent.long_name = 'Latent heat flux'
latent.units = 'W/m^2'
monob.long_name = 'Monin-Obukhov length'
monob.units = 'm'
cd.long_name = 'Drag coefficient'
cd.units = ''
cdn.long_name = 'Neutral Drag coefficient'
cdn.units = ''
ct.long_name = 'Heat exchange coefficient'
ct.units = ''
ctn.long_name = 'Neutral Heat exchange coefficient'
ctn.units = ''
cq.long_name = 'Moisture exchange coefficient'
cq.units = ''
cqn.long_name = 'Neutral Moisture exchange coefficient'
cqn.units = ''
tsrv.long_name = 'star virtual temperature'
tsrv.units = 'degrees Celsius'
tsr.long_name = 'star temperature'
tsr.units = 'degrees Celsius'
qsr.long_name = 'star specific humidity'
qsr.units = 'gr/kgr'
usr.long_name = 'friction velocity'
usr.units = 'm/s'
psim.long_name = 'Momentum stability function'
psit.long_name = 'Heat stability function'
u10n.long_name = '10m neutral wind speed'
u10n.units = 'm/s'
t10n.long_name = '10m neutral temperature'
t10n.units = 'degrees Celsius'
tv10n.long_name = '10m neutral virtual temperature'
tv10n.units = 'degrees Celsius'
q10n.long_name = '10m neutral specific humidity'
q10n.units = 'gr/kgr'
zo.long_name = 'momentum roughness length'
zo.units = 'm'
zot.long_name = 'temperature roughness length'
zot.units = 'm'
zoq.long_name = 'moisture roughness length'
zoq.units = 'm'
urefs.long_name = 'wind speed at ref height'
urefs.units = 'm/s'
trefs.long_name = 'temperature at ref height'
trefs.units = 'degrees Celsius'
qrefs.long_name = 'specific humidity at ref height'
qrefs.units = 'gr/kgr'
qair.long_name = 'specific humidity of air'
qair.units = 'gr/kgr'
qsea.long_name = 'specific humidity over water'
qsea.units = 'gr/kgr'
itera.long_name = 'number of iterations'
fid.close()
#%% delete variables
del longitude, latitude, Date, tau, sensible, latent, monob, cd, cdn
del ct, ctn, cq, cqn, tsrv, tsr, qsr, usr, psim, psit, psiq, u10n, t10n
del tv10n, q10n, zo, zot, zoq, urefs, trefs, qrefs, itera, dter, dqer
del qair, qsea, Rl, Rs, Rnl, dtwl
del tim, T, Td, p, lw, sw, lsm, spd, hin, latIn
else:
#%% save NetCDF4
fid = nc.Dataset(outF,'w', format='NETCDF4')
fid.createDimension('lon', len(lon))
fid.createDimension('lat', len(lat))
fid.createDimension('time', None)
longitude = fid.createVariable('lon', 'f4', 'lon')
latitude = fid.createVariable('lat', 'f4', 'lat')
Date = fid.createVariable('Date', 'i4', 'time')
tau = fid.createVariable('tau', 'f4', 'time')
sensible = fid.createVariable('shf', 'f4', 'time')
latent = fid.createVariable('lhf', 'f4', 'time')
monob = fid.createVariable('MO', 'f4', 'time')
cd = fid.createVariable('cd', 'f4', 'time')
cdn = fid.createVariable('cdn', 'f4', 'time')
ct = fid.createVariable('ct', 'f4', 'time')
ctn = fid.createVariable('ctn', 'f4', 'time')
cq = fid.createVariable('cq', 'f4', 'time')
cqn = fid.createVariable('cqn', 'f4', 'time')
tsrv = fid.createVariable('tsrv', 'f4', 'time')
tsr = fid.createVariable('tsr', 'f4', 'time')
qsr = fid.createVariable('qsr', 'f4', 'time')
usr = fid.createVariable('usr', 'f4', 'time')
psim = fid.createVariable('psim', 'f4', 'time')
psit = fid.createVariable('psit', 'f4', 'time')
psiq = fid.createVariable('psiq', 'f4', 'time')
u10n = fid.createVariable('u10n', 'f4', 'time')
t10n = fid.createVariable('t10n', 'f4', 'time')
tv10n = fid.createVariable('tv10n', 'f4', 'time')
q10n = fid.createVariable('q10n', 'f4', 'time')
zo = fid.createVariable('zo', 'f4', 'time')
zot = fid.createVariable('zot', 'f4', 'time')
zoq = fid.createVariable('zoq', 'f4', 'time')
urefs = fid.createVariable('uref', 'f4', 'time')
trefs = fid.createVariable('tref', 'f4', 'time')
qrefs = fid.createVariable('qref', 'f4', 'time')
itera = fid.createVariable('iter', 'i4', 'time')
dter = fid.createVariable('dter', 'f4', 'time')
dqer = fid.createVariable('dqer', 'f4', 'time')
dtwl = fid.createVariable('dter', 'f4', 'time')
qair = fid.createVariable('qair', 'f4', 'time')
qsea = fid.createVariable('qsea', 'f4', 'time')
Rl = fid.createVariable('Rl', 'f4', 'time')
Rs = fid.createVariable('Rs', 'f4', 'time')
Rnl = fid.createVariable('Rnl', 'f4', 'time')
longitude[:] = lon
latitude[:] = lat
Date[:] = date
tau[:] = res[0]
sensible[:] = res[1]
latent[:] = res[2]
monob[:] = res[3]
cd[:] = res[4]
cdn[:] = res[5]
ct[:] = res[6]
ctn[:] = res[7]
cq[:] = res[8]
cqn[:] = res[9]
tsrv[:] = res[10]
tsr[:] = res[11]
qsr[:] = res[12]
usr[:] = res[13]
psim[:] = res[14]
psit[:] = res[15]
psiq[:] = res[16]
u10n[:] = res[17]
t10n[:] = res[18]
tv10n[:] = res[19]
q10n[:] = res[20]
zo[:] = res[21]
zot[:] = res[22]
zoq[:] = res[23]
urefs[:] = res[24]
trefs[:] = res[25]
qrefs[:] = res[26]
itera[:] = res[27]
dter[:] = res[28]
dqer[:] = res[29]
dtwl[:] = res[30]
qair[:] = res[31]
qsea[:] = res[32]
Rl = res[33]
Rs = res[34]
Rnl = res[35]
longitude.long_name = 'Longitude'
longitude.units = 'degrees East'
latitude.long_name = 'Latitude'
latitude.units = 'degrees North'
Date.long_name = "calendar date"
Date.units = "YYYYMMDD UTC"
tau.long_name = 'Wind stress'
tau.units = 'N/m^2'
sensible.long_name = 'Sensible heat fluxe'
sensible.units = 'W/m^2'
latent.long_name = 'Latent heat flux'
latent.units = 'W/m^2'
monob.long_name = 'Monin-Obukhov length'
monob.units = 'm'
cd.long_name = 'Drag coefficient'
cd.units = ''
cdn.long_name = 'Neutral Drag coefficient'
cdn.units = ''
ct.long_name = 'Heat exchange coefficient'
ct.units = ''
ctn.long_name = 'Neutral Heat exchange coefficient'
ctn.units = ''
cq.long_name = 'Moisture exchange coefficient'
cq.units = ''
cqn.long_name = 'Neutral Moisture exchange coefficient'
cqn.units = ''
tsrv.long_name = 'star virtual temperature'
tsrv.units = 'degrees Celsius'
tsr.long_name = 'star temperature'
tsr.units = 'degrees Celsius'
qsr.long_name = 'star specific humidity'
qsr.units = 'gr/kgr'
usr.long_name = 'friction velocity'
usr.units = 'm/s'
psim.long_name = 'Momentum stability function'
psit.long_name = 'Heat stability function'
u10n.long_name = '10m neutral wind speed'
u10n.units = 'm/s'
t10n.long_name = '10m neutral temperature'
t10n.units = 'degrees Celsius'
tv10n.long_name = '10m neutral virtual temperature'
tv10n.units = 'degrees Celsius'
q10n.long_name = '10m neutral specific humidity'
q10n.units = 'gr/kgr'
zo.long_name = 'momentum roughness length'
zo.units = 'm'
zot.long_name = 'temperature roughness length'
zot.units = 'm'
zoq.long_name = 'moisture roughness length'
zoq.units = 'm'
urefs.long_name = 'wind speed at ref height'
urefs.units = 'm/s'
trefs.long_name = 'temperature at ref height'
trefs.units = 'degrees Celsius'
qrefs.long_name = 'specific humidity at ref height'
qrefs.units = 'gr/kgr'
qair.long_name = 'specific humidity of air'
qair.units = 'gr/kgr'
qsea.long_name = 'specific humidity over water'
qsea.units = 'gr/kgr'
itera.long_name = 'number of iterations'
fid.close()
#%% delete variables
del longitude, latitude, Date, tau, sensible, latent, monob, cd, cdn
del ct, ctn, cq, cqn, tsrv, tsr, qsr, usr, psim, psit, psiq, u10n, t10n
del tv10n, q10n, zo, zot, zoq, urefs, trefs, qrefs, itera, dter, dqer
del qair, qsea, Rl, Rs, Rnl
del t, rh, date, p, sw, spd, hin
else:
#%% save as .csv
np.savetxt(outF, np.vstack((date, lon, lat, res)).T,
delimiter=',',
header="date, lon, lat, tau, shf, lhf, L, cd, cdn, ct, ctn,"
" cq, cqn, tsrv, tsr, qsr, usr, psim, psit, u10n, t10n,"
" tv10n, q10n, zo, zot, zoq, uref, tref, qref, iter, dter,"
" dqer, dtwl, qair, qsea, Rl, Rs, Rnl")
return res, lon, lat
#%% run function
start_time = time.perf_counter()
#------------------------------------------------------------------------------
inF = input("Give input file name (data_all.csv or era5_r360x180.nc): \n")
meth = input("Give prefered method: \n")
while meth not in ["S80", "S88", "LP82", "YT96", "UA", "LY04", "C30", "C35",
"C40", "ecmwf","Beljaars"]:
print("method unknown")
meth = input("Give prefered method: \n")
else:
meth = meth #[meth]
ext = meth+"_"
#------------------------------------------------------------------------------
gustIn = input("Give gustiness option (to use default press enter): \n")
if (gustIn == ''):
gustIn = None
ext = ext+'gust_'
else:
gustIn = np.asarray(eval(gustIn), dtype=float)
if ((np.all(gustIn) == 0)):
ext = ext+'nogust_'
else:
ext = ext+'gust_'
#------------------------------------------------------------------------------
cskinIn = input("Give cool skin option (to use default press enter): \n")
if (cskinIn == ''):
cskinIn = None
if ((cskinIn == None) and (meth == "S80" or meth == "S88" or meth == "LP82"
or meth == "YT96" or meth == "UA" or
meth == "LY04")):
cskinIn = 0
ext = ext+'noskin_'
elif ((cskinIn == None) and (meth == "C30" or meth == "C35" or meth == "C40"
or meth == "ecmwf" or meth == "Beljaars")):
cskinIn = 1
ext = ext+'skin_'
else:
cskinIn = int(cskinIn)
if (cskinIn == 0):
ext = ext+'noskin_'
elif (cskinIn == 1):
ext = ext+'skin_'
#------------------------------------------------------------------------------
tolIn = input("Give tolerance option (to use default press enter): \n")
if (tolIn == ''):
tolIn = ['flux', 1e-3, 0.1, 0.1]
else:
tolIn = eval(tolIn)
ext = ext+'tol'+tolIn[0]
#------------------------------------------------------------------------------
outF = input("Give path and output file name: \n")
if ((outF == '') and (inF == "data_all.csv")):
outF = "out_"+inF[:-4]+"_"+ext+".csv"
elif ((outF == '') and (inF == "era5_r360x180.nc")):
outF = "out_"+inF[:-3]+"_"+ext+".nc"
elif ((outF[-4:] == '.csv') and (inF == 'era5_r360x180.nc')):
outF = outF[:-4]+".nc"
elif ((outF[-3:] != '.nc') and (outF[-4:] != '.csv')):
if (inF == "data_all.csv"):
outF = outF+".csv"
else:
outF = outF+".nc"
else:
outF = outF
#------------------------------------------------------------------------------
print("\n run_ASFC.py, started for method "+meth)
res, lon, lat = toy_ASFC(inF, outF, gustIn, cskinIn, tolIn, meth)
print("run_ASFC.py took ", np.round((time.perf_counter()-start_time)/60, 2),
"minutes to run")
#%% generate flux plots
if (inF == 'era5_r360x180.nc'):
cm = plt.cm.get_cmap('RdYlBu')
ttl = ["tau (Nm$^{-2}$)", "shf (Wm$^{-2}$)", "lhf (Wm$^{-2}$)"]
for i in range(3):
plt.figure()
plt.contourf(lon, lat,
np.nanmean(res[:, :, i], axis=0).reshape(len(lat),
len(lon)),
100, cmap=cm)
plt.colorbar()
plt.tight_layout()
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.title(meth+', '+ttl[i])
plt.savefig('./'+ttl[i][:3]+'_'+ext+'.png', dpi=300, bbox_inches='tight')
elif (inF == "data_all.csv"):
ttl = ["tau (Nm$^{-2}$)", "shf (Wm$^{-2}$)", "lhf (Wm$^{-2}$)"]
for i in range(3):
plt.figure()
plt.plot(res[i],'.c', markersize=1)
plt.title(meth)
plt.xlabel("points")
plt.ylabel(ttl[i])
plt.savefig('./'+ttl[i][:3]+'_'+ext+'.png', dpi=300, bbox_inches='tight')
#%% generate txt file with statistic
if ((cskinIn == None) and (meth == "S80" or meth == "S88" or meth == "LP82"
or meth == "YT96" or meth == "UA" or
meth == "LY04")):
cskinIn = 0
elif ((cskinIn == None) and (meth == "C30" or meth == "C35" or meth == "C40"
or meth == "ecmwf" or meth == "Beljaars")):
cskinIn = 1
if (np.all(gustIn == None) and (meth == "C30" or meth == "C35" or meth == "C40")):
gustIn = [1, 1.2, 600]
elif (np.all(gustIn == None) and (meth == "UA" or meth == "ecmwf")):
gustIn = [1, 1, 1000]
elif np.all(gustIn == None):
gustIn = [1, 1.2, 800]
elif ((np.size(gustIn) < 3) and (gustIn == 0)):
gust = [0, 0, 0]
if (tolIn == None):
tolIn = ['flux', 0.01, 1, 1]
print("Input summary", file=open('./stats.txt', 'a'))
print('input file name: {}, \n method: {}, \n gustiness: {}, \n cskin: {},'
' \n tolerance: {}'.format(inF, meth, gustIn, cskinIn, tolIn),
file=open('./stats.txt', 'a'))
ttl = np.asarray(["tau ", "shf ", "lhf ", "L ", "cd ", "cdn ",
"ct ", "ctn ", "cq ", "cqn ", "tsrv ", "tsr ",
"qsr ", "usr ", "psim ", "psit ", "psiq ", "u10n ",
"t10n ", "tv10n", "q10n ", "zo ", "zot ", "zoq ",
"urefs", "trefs", "qrefs", "itera", "dter ", "dqer ",
"dtwl ", "qair ", "qsea ", "Rl ", "Rs ", "Rnl "])
header = ["var", "mean", "median", "min", "max", "5%", "95%"]
n = np.shape(res)
stats = np.copy(ttl)
if (inF == 'era5_r360x180.nc'):
stats = np.c_[stats, np.nanmean(res.reshape(n[0]*n[1], n[2]), axis=0)]
stats = np.c_[stats, np.nanmedian(res.reshape(n[0]*n[1], n[2]), axis=0)]
stats = np.c_[stats, np.nanmin(res.reshape(n[0]*n[1], n[2]), axis=0)]
stats = np.c_[stats, np.nanmax(res.reshape(n[0]*n[1], n[2]), axis=0)]
stats = np.c_[stats, np.nanpercentile(res.reshape(n[0]*n[1], n[2]), 5,
axis=0)]
stats = np.c_[stats, np.nanpercentile(res.reshape(n[0]*n[1], n[2]), 95,
axis=0)]
print(tabulate(stats, headers=header, tablefmt="github", numalign="left",
floatfmt=("s", "2.2e", "2.2e", "2.2e", "2.2e", "2.2e",
"2.2e")), file=open('./stats.txt', 'a'))
print('-'*79+'\n', file=open('./stats.txt', 'a'))
elif (inF == "data_all.csv"):
stats = np.c_[stats, np.nanmean(res, axis=1)]
stats = np.c_[stats, np.nanmedian(res, axis=1)]
stats = np.c_[stats, np.nanmin(res, axis=1)]
stats = np.c_[stats, np.nanmax(res, axis=1)]
stats = np.c_[stats, np.nanpercentile(res, 5, axis=1)]
stats = np.c_[stats, np.nanpercentile(res, 95, axis=1)]
print(tabulate(stats, headers=header, tablefmt="github", numalign="left",
floatfmt=("s", "2.2e", "2.2e", "2.2e", "2.2e", "2.2e",
"2.2e")), file=open('./stats.txt', 'a'))
print('-'*79+'\n', file=open('./stats.txt', 'a'))
print('input file name: {}, \n method: {}, \n gustiness: {}, \n cskin: {},'
' \n tolerance: {}, \n output is written in: {}'.format(inF, meth,
gustIn, cskinIn,
tolIn, outF),
file=open('./readme.txt', 'w'))