octtree.py 23.8 KB
Newer Older
Joseph Siddons's avatar
Joseph Siddons committed
1 2
from datetime import datetime, timedelta
from .distance_metrics import haversine
3 4
from .distance_metrics import haversine, destination
from math import degrees, sqrt
Joseph Siddons's avatar
Joseph Siddons committed
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99


class SpaceTimeRecord:
    """
    ICOADS Record class.

    This is a simple instance of an ICOARDS record, it requires position and
    temporal data. It can optionally include a UID and extra data.

    The temporal component was designed to use `datetime` values, however all
    methods will work with numeric datetime information - for example a pentad,
    timestamp, julian day, etc. Note that any uses within an OctTree and
    SpaceTimeRectangle must also have timedelta values replaced with numeric
    ranges in this case.

    Equality is checked only on the required fields + UID if it is specified.

    Parameters
    ----------
    lon : float
        Horizontal coordinate (longitude).
    lat : float
        Vertical coordinate (latitude).
    datetime : datetime
        Datetime of the record. Can also be a numeric value such as pentad.
        Comparisons between Records with datetime and Records with numeric
        datetime will fail.
    uid : str | None
        Unique Identifier.
    **data
        Additional data passed to the SpaceTimeRecord for use by other functions
        or classes.
    """

    def __init__(
        self,
        lon: float,
        lat: float,
        datetime: datetime,
        uid: str | None = None,
        **data,
    ) -> None:
        self.lon = lon
        self.lat = lat
        self.datetime = datetime
        self.uid = uid
        for var, val in data.items():
            setattr(self, var, val)
        return None

    def __str__(self) -> str:
        return f"Record(x = {self.lon}, y = {self.lat}, datetime = {self.datetime}, uid = {self.uid})"

    def __eq__(self, other: object) -> bool:
        return (
            isinstance(other, SpaceTimeRecord)
            and self.lon == other.lon
            and self.lat == other.lat
            and self.datetime == other.datetime
            and (not (self.uid or other.uid) or self.uid == other.uid)
        )


class SpaceTimeRecords(list[SpaceTimeRecord]):
    """List of SpaceTimeRecords"""


class SpaceTimeRectangle:
    """
    A simple Space Time SpaceTimeRectangle class.

    This constructs a simple Rectangle object.
    The defining coordinates are the centres of the box, and the extents
    are the full width, height, and time extent.

    Whilst the rectangle is assumed to lie on the surface of Earth, this is
    a projection as the rectangle is defined by a longitude/latitude range.

    The temporal components are defined in the same way as the spatial
    components, that is that the `datetime` component (t) is the "centre", and
    the time extent (dt) is the full time range of the box.

    Parameters
    ----------
    lon : float
        Horizontal centre of the rectangle (longitude).
    lat : float
        Vertical centre of the rectangle (latitude).
    datetime : datetime
        Datetime centre of the rectangle.
    w : float
        Width of the rectangle (longitude range).
    h : float
        Height of the rectangle (latitude range).
    dt : timedelta
100
        time extent of the rectangle.
Joseph Siddons's avatar
Joseph Siddons committed
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    """

    def __init__(
        self,
        lon: float,
        lat: float,
        datetime: datetime,
        lon_range: float,
        lat_range: float,
        dt: timedelta,
    ) -> None:
        self.lon = lon
        self.lat = lat
        self.lon_range = lon_range
        self.lat_range = lat_range
        self.datetime = datetime
        self.dt = dt

    def __str__(self) -> str:
        return f"SpaceTimeRectangle(x = {self.lon}, y = {self.lat}, w = {self.lon_range}, h = {self.lat_range}, t = {self.datetime}, dt = {self.dt})"

    def __eq__(self, other: object) -> bool:
        return (
            isinstance(other, SpaceTimeRectangle)
            and self.lon == other.lon
            and self.lat == other.lat
            and self.lon_range == other.lon_range
            and self.lat_range == other.lat_range
            and self.datetime == other.datetime
            and self.dt == other.dt
        )

    def contains(self, point: SpaceTimeRecord) -> bool:
        """Test if a point is contained within the SpaceTimeRectangle"""
        return (
            point.lon <= self.lon + self.lon_range / 2
            and point.lon >= self.lon - self.lon_range / 2
            and point.lat <= self.lat + self.lat_range / 2
            and point.lat >= self.lat - self.lat_range / 2
            and point.datetime <= self.datetime + self.dt / 2
            and point.datetime >= self.datetime - self.dt / 2
        )

    def intersects(self, other: object) -> bool:
        """Test if another Rectangle object intersects this Rectangle"""
        return isinstance(other, SpaceTimeRectangle) and not (
            self.lon - self.lon_range / 2 > other.lon + other.lon_range / 2
            or self.lon + self.lon_range / 2 < other.lon - other.lon_range / 2
            or self.lat - self.lat_range / 2 > other.lat + other.lat_range / 2
            or self.lat + self.lat_range / 2 < other.lat - other.lat_range / 2
            or self.datetime - self.dt / 2 > other.datetime + other.dt / 2
            or self.datetime + self.dt / 2 < other.datetime - other.dt / 2
        )

    def nearby(
        self,
        point: SpaceTimeRecord,
        dist: float,
        t_dist: timedelta,
    ) -> bool:
        """
        Check if point is nearby the Rectangle

        Determines if a SpaceTimeRecord that falls on the surface of Earth is
        nearby to the rectangle in space and time. This calculation uses the
        Haversine distance metric.

        Distance from rectangle to point is challenging on the surface of a
        sphere, this calculation will return false positives as a check based
        on the distance from the centre of the rectangle to the corners, or
        to its Eastern edge (if the rectangle crosses the equator) is used in
        combination with the input distance.

        The primary use-case of this method is for querying an OctTree for
        nearby Records.

        Parameters
        ----------
        point : SpaceTimeRecord
        dist : float,
        t_dist : timedelta

        Returns
        -------
        bool : True if the point is <= dist + max(dist(centre, corners))
        """
187 188 189 190 191
        if (
            point.datetime - t_dist > self.datetime + self.dt / 2
            or point.datetime + t_dist < self.datetime - self.dt / 2
        ):
            return False
Joseph Siddons's avatar
Joseph Siddons committed
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        # QUESTION: Is this sufficient? Possibly it is overkill
        corner_dist = max(
            haversine(
                self.lon,
                self.lat,
                self.lon + self.lon_range / 2,
                self.lat + self.lat_range / 2,
            ),
            haversine(
                self.lon,
                self.lat,
                self.lon + self.lon_range / 2,
                self.lat - self.lat_range / 2,
            ),
        )
        if (self.lat + self.lat_range / 2) * (
            self.lat - self.lat_range / 2
        ) < 0:
            corner_dist = max(
                corner_dist,
                haversine(self.lon, self.lat, self.lon + self.lon_range / 2, 0),
            )
        return (
            haversine(self.lon, self.lat, point.lon, point.lat)
            <= dist + corner_dist
217 218 219 220
        )


class SpaceTimeEllipse:
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    """
    A simple Ellipse Class for an ellipse on the surface of a sphere.

    Parameters
    ----------
    lon : float
        Horizontal centre of the ellipse
    lat : float
        Vertical centre of the ellipse
    datetime : datetime
        Datetime centre of the ellipse.
    a : float
        Length of the semi-major axis
    b : float
        Length of the semi-minor axis
    theta : float
        Angle of the semi-major axis from horizontal anti-clockwise in radians
    dt : timedelta
        (full) time extent of the ellipse.
    """
241 242 243 244 245 246

    def __init__(
        self,
        lon: float,
        lat: float,
        datetime: datetime,
247 248 249
        a: float,
        b: float,
        theta: float,
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        dt: timedelta,
    ) -> None:
        self.a = a
        self.b = b
        self.lon = lon
        self.lat = lat
        self.datetime = datetime
        self.dt = dt
        # theta is anti-clockwise angle from horizontal in radians
        self.theta = theta
        # bearing is angle clockwise from north in degrees
        self.bearing = (90 - degrees(self.theta)) % 360

        a2 = self.a * self.a
        b2 = self.b * self.b

        self.c = sqrt(a2 - b2)
        self.p1_lon, self.p1_lat = destination(
            self.lon,
            self.lat,
            self.bearing,
            self.c,
        )
        self.p2_lon, self.p2_lat = destination(
            self.lon,
            self.lat,
            (180 - self.bearing) % 360,
            self.c,
        )

    def contains(self, point: SpaceTimeRecord) -> bool:
        """Test if a point is contained within the Ellipse"""
        return (
            (
                haversine(self.p1_lon, self.p1_lat, point.lon, point.lat)
                + haversine(self.p2_lon, self.p2_lat, point.lon, point.lat)
            )
            <= 2 * self.a
            and point.datetime <= self.datetime + self.dt / 2
            and point.datetime >= self.datetime - self.dt / 2
        )

    def nearby_rect(self, rect: SpaceTimeRectangle) -> bool:
        """Test if a rectangle is near to the Ellipse"""
        if (
            rect.datetime - rect.dt / 2 > self.datetime + self.dt / 2
            or rect.datetime + rect.dt / 2 < self.datetime - self.dt / 2
        ):
            return False
        # TODO: Check corners, and 0 lat
        corner_dist = max(
            haversine(
                rect.lon,
                rect.lat,
                rect.lon + rect.lon_range / 2,
                rect.lat + rect.lat_range / 2,
            ),
            haversine(
                rect.lon,
                rect.lat,
                rect.lon + rect.lon_range / 2,
                rect.lat - rect.lat_range / 2,
            ),
        )
        if (rect.lat + rect.lat_range / 2) * (
            rect.lat - rect.lat_range / 2
        ) < 0:
            corner_dist = max(
                corner_dist,
                haversine(rect.lon, rect.lat, rect.lon + rect.lon_range / 2, 0),
            )
        return (
            haversine(self.p1_lon, self.p1_lat, rect.lon, rect.lat)
            <= corner_dist + self.a
            or haversine(self.p2_lon, self.p2_lat, rect.lon, rect.lat)
            <= corner_dist + self.a
Joseph Siddons's avatar
Joseph Siddons committed
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
        )


class OctTree:
    """
    A Simple OctTree class for PyCOADS.

    Acts as a space-time OctTree on the surface of Earth, allowing for querying
    nearby points faster than searching a full DataFrame. As SpaceTimeRecords
    are added to the OctTree, the OctTree divides into 8 children as the
    capacity is reached. Additional SpaceTimeRecords are then added to the
    children where they fall within the child OctTree's boundary.

    SpaceTimeRecords already part of the OctTree before divided are not
    distributed to the children OctTrees.

    Whilst the OctTree has a temporal component, and was designed to utilise
    datetime / timedelta objects, numeric values and ranges can be used. This
    usage must be consistent for the boundary and all SpaceTimeRecords that
    are part of the OctTree. This allows for usage of pentad, timestamp,
    Julian day, etc. as datetime values.

    Parameters
    ----------
    boundary : SpaceTimeRectangle
        The bounding SpaceTimeRectangle of the QuadTree
    capacity : int
        The capacity of each cell, if max_depth is set then a cell at the
        maximum depth may contain more points than the capacity.
    depth : int
        The current depth of the cell. Initialises to zero if unset.
    max_depth : int | None
        The maximum depth of the QuadTree. If set, this can override the
        capacity for cells at the maximum depth.
    """

    def __init__(
        self,
        boundary: SpaceTimeRectangle,
        capacity: int = 5,
        depth: int = 0,
        max_depth: int | None = None,
    ) -> None:
        self.boundary = boundary
        self.capacity = capacity
        self.depth = depth
        self.max_depth = max_depth
        self.points = SpaceTimeRecords()
        self.divided: bool = False
        return None

    def __str__(self) -> str:
        indent = "    " * self.depth
        out = f"{indent}OctTree:\n"
        out += f"{indent}- boundary: {self.boundary}\n"
        out += f"{indent}- capacity: {self.capacity}\n"
        out += f"{indent}- depth: {self.depth}\n"
        if self.max_depth:
            out += f"{indent}- max_depth: {self.max_depth}\n"
        if self.points:
            out += f"{indent}- contents:\n"
            out += f"{indent}- number of elements: {len(self.points)}\n"
            for p in self.points:
                out += f"{indent}  * {p}\n"
        if self.divided:
            out += f"{indent}- with children:\n"
            out += f"{self.northwestback}"
            out += f"{self.northeastback}"
            out += f"{self.southwestback}"
            out += f"{self.southeastback}"
            out += f"{self.northwestfwd}"
            out += f"{self.northeastfwd}"
            out += f"{self.southwestfwd}"
            out += f"{self.southeastfwd}"
        return out

    def divide(self):
        """Divide the QuadTree"""
        self.northwestfwd = OctTree(
            SpaceTimeRectangle(
                self.boundary.lon - self.boundary.lon_range / 4,
                self.boundary.lat + self.boundary.lat_range / 4,
                self.boundary.datetime + self.boundary.dt / 4,
                self.boundary.lon_range / 2,
                self.boundary.lat_range / 2,
                self.boundary.dt / 2,
            ),
            capacity=self.capacity,
            depth=self.depth + 1,
            max_depth=self.max_depth,
        )
        self.northeastfwd = OctTree(
            SpaceTimeRectangle(
                self.boundary.lon + self.boundary.lon_range / 4,
                self.boundary.lat + self.boundary.lat_range / 4,
                self.boundary.datetime + self.boundary.dt / 4,
                self.boundary.lon_range / 2,
                self.boundary.lat_range / 2,
                self.boundary.dt / 2,
            ),
            capacity=self.capacity,
            depth=self.depth + 1,
            max_depth=self.max_depth,
        )
        self.southwestfwd = OctTree(
            SpaceTimeRectangle(
                self.boundary.lon - self.boundary.lon_range / 4,
                self.boundary.lat - self.boundary.lat_range / 4,
                self.boundary.datetime + self.boundary.dt / 4,
                self.boundary.lon_range / 2,
                self.boundary.lat_range / 2,
                self.boundary.dt / 2,
            ),
            capacity=self.capacity,
            depth=self.depth + 1,
            max_depth=self.max_depth,
        )
        self.southeastfwd = OctTree(
            SpaceTimeRectangle(
                self.boundary.lon + self.boundary.lon_range / 4,
                self.boundary.lat - self.boundary.lat_range / 4,
                self.boundary.datetime + self.boundary.dt / 4,
                self.boundary.lon_range / 2,
                self.boundary.lat_range / 2,
                self.boundary.dt / 2,
            ),
            capacity=self.capacity,
            depth=self.depth + 1,
            max_depth=self.max_depth,
        )
        self.northwestback = OctTree(
            SpaceTimeRectangle(
                self.boundary.lon - self.boundary.lon_range / 4,
                self.boundary.lat + self.boundary.lat_range / 4,
                self.boundary.datetime - self.boundary.dt / 4,
                self.boundary.lon_range / 2,
                self.boundary.lat_range / 2,
                self.boundary.dt / 2,
            ),
            capacity=self.capacity,
            depth=self.depth + 1,
            max_depth=self.max_depth,
        )
        self.northeastback = OctTree(
            SpaceTimeRectangle(
                self.boundary.lon + self.boundary.lon_range / 4,
                self.boundary.lat + self.boundary.lat_range / 4,
                self.boundary.datetime - self.boundary.dt / 4,
                self.boundary.lon_range / 2,
                self.boundary.lat_range / 2,
                self.boundary.dt / 2,
            ),
            capacity=self.capacity,
            depth=self.depth + 1,
            max_depth=self.max_depth,
        )
        self.southwestback = OctTree(
            SpaceTimeRectangle(
                self.boundary.lon - self.boundary.lon_range / 4,
                self.boundary.lat - self.boundary.lat_range / 4,
                self.boundary.datetime - self.boundary.dt / 4,
                self.boundary.lon_range / 2,
                self.boundary.lat_range / 2,
                self.boundary.dt / 2,
            ),
            capacity=self.capacity,
            depth=self.depth + 1,
            max_depth=self.max_depth,
        )
        self.southeastback = OctTree(
            SpaceTimeRectangle(
                self.boundary.lon + self.boundary.lon_range / 4,
                self.boundary.lat - self.boundary.lat_range / 4,
                self.boundary.datetime - self.boundary.dt / 4,
                self.boundary.lon_range / 2,
                self.boundary.lat_range / 2,
                self.boundary.dt / 2,
            ),
            capacity=self.capacity,
            depth=self.depth + 1,
            max_depth=self.max_depth,
        )
        self.divided = True

    def _datetime_is_numeric(self) -> bool:
        return not isinstance(self.boundary.datetime, datetime)

    def insert(self, point: SpaceTimeRecord) -> bool:
        """
        Insert a SpaceTimeRecord into the QuadTree.

        Note that the SpaceTimeRecord can have numeric datetime values if that
        is consistent with the OctTree.
        """
        if not self.boundary.contains(point):
            return False
        elif self.max_depth and self.depth == self.max_depth:
            self.points.append(point)
            return True
        elif len(self.points) < self.capacity:
            self.points.append(point)
            return True
        else:
            if not self.divided:
                self.divide()
            if self.northwestback.insert(point):
                return True
            elif self.northeastback.insert(point):
                return True
            elif self.southwestback.insert(point):
                return True
            elif self.southeastback.insert(point):
                return True
            elif self.northwestfwd.insert(point):
                return True
            elif self.northeastfwd.insert(point):
                return True
            elif self.southwestfwd.insert(point):
                return True
            elif self.southeastfwd.insert(point):
                return True
            return False

    def query(
        self,
        rect: SpaceTimeRectangle,
        points: SpaceTimeRecords | None = None,
    ) -> SpaceTimeRecords:
        """Get points that fall in a SpaceTimeRectangle"""
        if not points:
            points = SpaceTimeRecords()
        if not self.boundary.intersects(rect):
            return points

        for point in self.points:
            if rect.contains(point):
                points.append(point)

        if self.divided:
            points = self.northwestfwd.query(rect, points)
            points = self.northeastfwd.query(rect, points)
            points = self.southwestfwd.query(rect, points)
            points = self.southeastfwd.query(rect, points)
            points = self.northwestback.query(rect, points)
            points = self.northeastback.query(rect, points)
            points = self.southwestback.query(rect, points)
            points = self.southeastback.query(rect, points)

        return points

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    def query_ellipse(
        self,
        ellipse: SpaceTimeEllipse,
        points: SpaceTimeRecords | None = None,
    ) -> SpaceTimeRecords:
        """Get points that fall in an ellipse."""
        if not points:
            points = SpaceTimeRecords()
        if not ellipse.nearby_rect(self.boundary):
            return points

        for point in self.points:
            if ellipse.contains(point):
                points.append(point)

        if self.divided:
            points = self.northwestfwd.query_ellipse(ellipse, points)
            points = self.northeastfwd.query_ellipse(ellipse, points)
            points = self.southwestfwd.query_ellipse(ellipse, points)
            points = self.southeastfwd.query_ellipse(ellipse, points)
            points = self.northwestback.query_ellipse(ellipse, points)
            points = self.northeastback.query_ellipse(ellipse, points)
            points = self.southwestback.query_ellipse(ellipse, points)
            points = self.southeastback.query_ellipse(ellipse, points)

        return points

Joseph Siddons's avatar
Joseph Siddons committed
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
    def nearby_points(
        self,
        point: SpaceTimeRecord,
        dist: float,
        t_dist: timedelta,
        points: SpaceTimeRecords | None = None,
    ) -> SpaceTimeRecords:
        """
        Get all points that are nearby another point.

        Query the OctTree to find all SpaceTimeRecords within the OctTree that
        are nearby to the query SpaceTimeRecord. This search should be faster
        than searching through all records, since only OctTree children whose
        boundaries are close to the query SpaceTimeRecord are evaluated.

        Parameters
        ----------
        point : SpaceTimeRecord
            The query point.
        dist : float
            The distance for comparison. Note that Haversine distance is used
            as the distance metric as the query SpaceTimeRecord and OctTree are
            assumed to lie on the surface of Earth.
        t_dist : timedelta
            Max time gap between SpaceTimeRecords within the OctTree and the
            query SpaceTimeRecord. Can be numeric if the OctTree boundaries,
            SpaceTimeRecords, and query SpaceTimeRecord have numeric datetime
            values and ranges.
        points : SpaceTimeRecords | None
            List of SpaceTimeRecords already found. Most use cases will be to
            not set this value, since it's main use is for passing onto the
            children OctTrees.

        Returns
        -------
        SpaceTimeRecords : A list of SpaceTimeRecords whose distance to the
        query SpaceTimeRecord is <= dist, and the datetimes of the
        SpaceTimeRecords fall within the datetime range of the query
        SpaceTimeRecord.
        """
        if not points:
            points = SpaceTimeRecords()
        if not self.boundary.nearby(point, dist, t_dist):
            return points

        for test_point in self.points:
            if (
                haversine(point.lon, point.lat, test_point.lon, test_point.lat)
                <= dist
                and test_point.datetime <= point.datetime + t_dist
                and test_point.datetime >= point.datetime - t_dist
            ):
                points.append(test_point)

        if self.divided:
            points = self.northwestback.nearby_points(
                point, dist, t_dist, points
            )
            points = self.northeastback.nearby_points(
                point, dist, t_dist, points
            )
            points = self.southwestback.nearby_points(
                point, dist, t_dist, points
            )
            points = self.southeastback.nearby_points(
                point, dist, t_dist, points
            )
            points = self.northwestfwd.nearby_points(
                point, dist, t_dist, points
            )
            points = self.northeastfwd.nearby_points(
                point, dist, t_dist, points
            )
            points = self.southwestfwd.nearby_points(
                point, dist, t_dist, points
            )
            points = self.southeastfwd.nearby_points(
                point, dist, t_dist, points
            )

        return points