nemo_bdy_tide2.py 11 KB
Newer Older
James Harle's avatar
James Harle committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14
'''



'''
# pylint: disable=E1103
# pylint: disable=no-name-in-module
import numpy as np
import scipy.spatial as sp
from netCDF4 import Dataset
import copy # DEBUG ONLY- allows multiple runs without corruption
from pynemo import nemo_bdy_grid_angle
from pynemo.nemo_bdy_lib import rot_rep

15 16 17 18 19 20 21 22 23 24 25

"
import foo
method_to_call = getattr(foo, 'bar')
result = method_to_call()
You could shorten lines 2 and 3 to:

result = getattr(foo, 'bar')()
"


James Harle's avatar
James Harle committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
class Extract:

    def __init__(self, setup, DstCoord, Grid):

        self.g_type = Grid.grid_type
        DC = copy.deepcopy(DstCoord)
        dst_lon = DC.bdy_lonlat[self.g_type]['lon'][Grid.bdy_r == 0]
        dst_lat = DC.bdy_lonlat[self.g_type]['lat'][Grid.bdy_r == 0]
        self.dst_dep = DC.depths[self.g_type]['bdy_hbat'][Grid.bdy_r == 0]
        self.harm_Im = {} # tidal boundary data: Imaginary
        self.harm_Re = {} # tidal boundary data: Real
        
        # Modify lon for 0-360 TODO this needs to be auto-dectected
        
        dst_lon = np.array([x if x > 0 else x+360 for x in dst_lon])
      
        fileIDb = '../data/tide/grid_tpxo7.2.nc' # TPX bathymetry file
        nb = Dataset(fileIDb) # Open the TPX bathybetry file using the NetCDF4-Python library

        # Open the TPX Datafiles using the NetCDF4-Python library
            
        if self.g_type == 't':    
            self.fileID = '../data/tide/h_tpxo7.2.nc' # TPX sea surface height file
            self.var_Im = 'hIm' 
            self.var_Re = 'hRe' 
        elif (self.g_type == 'u') or (self.g_type == 'v') :
            self.fileID = '../data/tide/u_tpxo7.2.nc' # TPX velocity file
            self.var_Im = 'UIm' 
            self.var_Re = 'URe' 
            self.var_Im2 = 'VIm' 
            self.var_Re2 = 'VRe' 
            self.key_tr = setup['trans']
            
            # Determine the grid angle for rotating vector qunatities
            maxJ = DC.lonlat['t']['lon'].shape[0]
            maxI = DC.lonlat['t']['lon'].shape[1]
            GridAngles = nemo_bdy_grid_angle.GridAngle(setup['dst_hgr'], 1, maxI, 1, maxJ, self.g_type)
            dst_gcos = np.ones([maxJ, maxI])
            dst_gsin = np.zeros([maxJ,maxI])            
            dst_gcos[1:,1:] = GridAngles.cosval
            dst_gsin[1:,1:] = GridAngles.sinval

            # Retain only boundary points rotation information
            self.gcos = np.zeros(Grid.bdy_i.shape[0])
            self.gsin = np.zeros(Grid.bdy_i.shape[0])
            for p in range(Grid.bdy_i.shape[0]):
                self.gcos[p] = dst_gcos[Grid.bdy_i[p,1], Grid.bdy_i[p,0]]
                self.gsin[p] = dst_gsin[Grid.bdy_i[p,1], Grid.bdy_i[p,0]]
            
            if self.g_type == 'u':
                self.rot_dir = 'i'
            elif self.g_type == 'v':
                self.rot_dir = 'j'
        else:
            print 'You should not see this message!'
              
        # We will average velocities onto the T grid as there is a rotation to be done 
        # Also need to account for east-west wrap-around
        nc = Dataset('../data/tide/h_tpxo7.2.nc')
        lon = np.ravel(np.concatenate([nc.variables['lon_z'][-2:,:], 
                                       nc.variables['lon_z'][:,:], 
                                       nc.variables['lon_z'][0:2,:]]))
        lat = np.ravel(np.concatenate([nc.variables['lat_z'][-2:,:], 
                                       nc.variables['lat_z'][:,:], 
                                       nc.variables['lat_z'][0:2,:]]))
        bat = np.ravel(np.concatenate([nb.variables['hz'][-2:,:], 
                                       nb.variables['hz'][:,:], 
                                       nb.variables['hz'][0:2,:]]))
        msk = np.ravel(np.concatenate([nb.variables['mz'][-2:,:], 
                                       nb.variables['mz'][:,:], 
                                       nb.variables['mz'][0:2,:]]))
     
        # Pull out the constituents that are avaibable
        self.cons = []
        for ncon in range(nc.variables['con'].shape[0]):
            self.cons.append(nc.variables['con'][ncon,:].tostring().strip())
                        
        nc.close() # Close Datafile
        nb.close() # Close Bathymetry file

        # Find nearest neighbours on the source grid to each dst bdy point
        source_tree = sp.cKDTree(zip(lon, lat))
        dst_pts = zip(dst_lon, dst_lat)
        # Upper bound set at 0.5 deg as the TPXO7.2 data are at 0.25 deg resolution and 
        # we don't want to grab points from further afield
        nn_dist, self.nn_id = source_tree.query(dst_pts, k=4, eps=0, p=2, 
                                                distance_upper_bound=0.5)
        
        # Create a weighting index for interpolation onto dst bdy point 
        # need to check for missing values
        
        ind = nn_dist == np.inf

        self.nn_id[ind] = 0  # better way of carrying None in the indices?      
        dx = (lon[self.nn_id] - np.repeat(np.reshape(dst_lon,[dst_lon.size, 1]),4,axis=1) ) * np.cos(np.repeat(np.reshape(dst_lat,[dst_lat.size, 1]),4,axis=1) * np.pi / 180.)
        dy =  lat[self.nn_id] - np.repeat(np.reshape(dst_lat,[dst_lat.size, 1]),4,axis=1)
        
        dist_tot = np.power((np.power(dx, 2) + np.power(dy, 2)), 0.5)

        self.msk = msk[self.nn_id]
        self.bat = bat[self.nn_id]
        
        dist_tot[ind | self.msk] = np.nan
        
        dist_wei = 1/( np.divide(dist_tot,(np.repeat(np.reshape(np.nansum(dist_tot,axis=1),[dst_lat.size, 1]),4,axis=1)) ) )
        
        self.nn_wei = dist_wei/np.repeat(np.reshape(np.nansum(dist_wei, axis=1),[dst_lat.size, 1]),4,axis=1)       
        self.nn_wei[ind | self.msk] = 0.
        
        # Need to identify missing points and throw a warning and set values to zero
        
        mv = np.sum(self.nn_wei,axis=1) == 0
        if np.sum(mv) > 1:
            print '##WARNING## There are', np.sum(mv), 'missing values, these will be set to ZERO'
        else:
            print '##WARNING## There is', np.sum(mv), 'missing value, this will be set to ZERO'
        
    def extract_con(self, con):        
        
        if con in self.cons:
            con_ind = self.cons.index(con)
            
            # Extract the complex amplitude components
            nc = Dataset(self.fileID) # pass variable ids to nc
            
            if self.g_type == 't':
                
                
                vIm = np.ravel(np.concatenate([nc.variables[self.var_Im][con_ind,-2:,:],
                                               nc.variables[self.var_Im][con_ind,:,:],
                                               nc.variables[self.var_Im][con_ind,0:2,:]]))
                vRe = np.ravel(np.concatenate([nc.variables[self.var_Re][con_ind,-2:,:],
                                               nc.variables[self.var_Re][con_ind,:,:],
                                               nc.variables[self.var_Re][con_ind,0:2,:]]))
        
                self.harm_Im[con] = np.sum(vIm[self.nn_id]*self.nn_wei,axis=1)
                self.harm_Re[con] = np.sum(vRe[self.nn_id]*self.nn_wei,axis=1)
            
            else: 
                
                uIm = np.concatenate([nc.variables[self.var_Im][con_ind,-2:,:],
                                      nc.variables[self.var_Im][con_ind,:,:],
                                      nc.variables[self.var_Im][con_ind,0:3,:]])
                uRe = np.concatenate([nc.variables[self.var_Re][con_ind,-2:,:],
                                      nc.variables[self.var_Re][con_ind,:,:],
                                      nc.variables[self.var_Re][con_ind,0:3,:]])
                                               
                vIm = np.concatenate([nc.variables[self.var_Im2][con_ind,-2:,:],
                                      nc.variables[self.var_Im2][con_ind,:,:],
                                      nc.variables[self.var_Im2][con_ind,0:2,:]])
                vRe = np.concatenate([nc.variables[self.var_Re2][con_ind,-2:,:],
                                      nc.variables[self.var_Re2][con_ind,:,:],
                                      nc.variables[self.var_Re2][con_ind,0:2,:]])
                # Deal with north pole. NB in TPXO7.2 data U and Z at 90N have different
                # values for each Longitude value! Plus there's something odd with the 
                # hu and hv depths not being the min of surrounding T-grid depths
                # TODO remove hardwired 722 index point and make generic
                vIm = np.concatenate([vIm[:,:], np.concatenate([vIm[722:,-1],vIm[:722,-1]])[:,np.newaxis]],axis=1)
                vRe = np.concatenate([vRe[:,:], np.concatenate([vRe[722:,-1],vRe[:722,-1]])[:,np.newaxis]],axis=1)
                                      
                # Average U and V onto the T-grid
                                      
                uIm = np.ravel((uIm[:-1,:] + uIm[1:,:])/2)
                uRe = np.ravel((uRe[:-1,:] + uRe[1:,:])/2)
                vIm = np.ravel((vIm[:,:-1] + vIm[:,1:])/2)
                vRe = np.ravel((vRe[:,:-1] + vRe[:,1:])/2)
                
                if self.key_tr: # We convert to velocity using tidal model bathymetry
                
                    harm_Im = np.sum(uIm[self.nn_id]*self.nn_wei,axis=1)/np.sum(self.bat*self.nn_wei,axis=1)
                    harm_Re = np.sum(uRe[self.nn_id]*self.nn_wei,axis=1)/np.sum(self.bat*self.nn_wei,axis=1)
                    harm_Im2 = np.sum(vIm[self.nn_id]*self.nn_wei,axis=1)/np.sum(self.bat*self.nn_wei,axis=1)
                    harm_Re2 = np.sum(vRe[self.nn_id]*self.nn_wei,axis=1)/np.sum(self.bat*self.nn_wei,axis=1)
      
                else: # We convert to velocity using the regional model bathymetry
                
                    harm_Im = np.sum(uIm[self.nn_id]*self.nn_wei,axis=1)/self.dst_dep
                    harm_Re = np.sum(uRe[self.nn_id]*self.nn_wei,axis=1)/self.dst_dep
                    harm_Im2 = np.sum(vIm[self.nn_id]*self.nn_wei,axis=1)/self.dst_dep
                    harm_Re2 = np.sum(vRe[self.nn_id]*self.nn_wei,axis=1)/self.dst_dep
      
                
                # Rotate vectors
            
                self.harm_Im[con] = rot_rep(harm_Im, harm_Im2, self.g_type,
                                      'en to %s' %self.rot_dir, self.gcos, self.gsin)
                self.harm_Re[con] = rot_rep(harm_Re, harm_Re2, self.g_type,
                                      'en to %s' %self.rot_dir, self.gcos, self.gsin)
                self.harm_Im[con][self.msk]=0.
                self.harm_Re[con][self.msk]=0.
              
            nc.close()
                                    
        else:
            
            # throw some warning
            print '##WARNING## Missing constituent values will be set to ZERO'
        
            self.harm_Im[con] = np.zeros(self.nn_id[:,0].size)
            self.harm_Re[con] = np.zeros(self.nn_id[:,0].size)