1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
'''
Created on Wed Sep 12 08:02:46 2012
The main application script for the NRCT.
@author James Harle
@author John Kazimierz Farey
@author Srikanth Nagella
$Last commit on:$
'''
# pylint: disable=E1103
# pylint: disable=no-name-in-module
#External imports
import time
import logging
import numpy as np
from PyQt4.QtGui import QMessageBox
#Local imports
from pynemo import pynemo_settings_editor
from pynemo import nemo_bdy_ncgen as ncgen
from pynemo import nemo_bdy_ncpop as ncpop
from pynemo import nemo_bdy_source_coord as source_coord
from pynemo import nemo_bdy_dst_coord as dst_coord
from pynemo import nemo_bdy_setup as setup
from pynemo import nemo_bdy_gen_c as gen_grid
from pynemo import nemo_coord_gen_pop as coord
from pynemo import nemo_bdy_zgrv2 as zgrv
from pynemo import nemo_bdy_extr_tm3 as extract
from pynemo.reader.factory import GetFile
from pynemo.reader import factory
from pynemo.tide import nemo_bdy_tide3 as tide
from pynemo.tide import nemo_bdy_tide_ncgen
from pynemo.utils import Constants
from pynemo.gui.nemo_bdy_mask import Mask as Mask_File
class Grid(object):
"""
A Grid object that stores bdy grid information
"""
def __init__(self):
self.bdy_i = None # bdy indices
self.bdy_r = None # associated rimwidth values
self.grid_type = None # this can be T/U/V
self.fname_2 = None # 2nd file for vector rotation
self.max_i = None # length of i-axis in fname_2
self.max_j = None # length of j-axis in fname_2
self.source_time = None # netcdftime information from parent files
logger = logging.getLogger(__name__)
logging.basicConfig(filename='nrct.log', level=logging.INFO)
def process_bdy(setup_filepath=0, mask_gui=False):
"""
Main entry for processing BDY lateral boundary conditions.
This is the main script that handles all the calls to generate open
boundary conditions for a given regional domain. Input options are handled
in a NEMO style namelist (namelist.bdy). There is an optional GUI allowing
the user to create a mask that defines the extent of the regional model.
Args:
setup_filepath (str) : file path to find namelist.bdy
mask_gui (bool): whether use of the GUI is required
"""
# Start Logger
logger.info('Start NRCT Logging: '+time.asctime())
logger.info('============================================')
SourceCoord = source_coord.SourceCoord()
DstCoord = dst_coord.DstCoord()
Setup = setup.Setup(setup_filepath) # default settings file
settings = Setup.settings
logger.info('Reading grid completed')
bdy_msk = _get_mask(Setup, mask_gui)
DstCoord.bdy_msk = bdy_msk == 1
logger.info('Reading mask completed')
bdy_ind = {} # define a dictionary to hold the grid information
for grd in ['t', 'u', 'v']:
bdy_ind[grd] = gen_grid.Boundary(bdy_msk, settings, grd)
logger.info('Generated BDY %s information', grd)
logger.info('Grid %s has shape %s', grd, bdy_ind[grd].bdy_i.shape)
# TODO: Write in option to seperate out disconnected LBCs
# Write out grid information to coordinates.bdy.nc
co_set = coord.Coord(settings['dst_dir']+'/coordinates.bdy.nc', bdy_ind)
co_set.populate(settings['dst_hgr'])
logger.info('File: coordinates.bdy.nc generated and populated')
# Idenitify number of boundary points
nbdy = {}
for grd in ['t', 'u', 'v']:
nbdy[grd] = len(bdy_ind[grd].bdy_i[:, 0])
# Gather grid information
# TODO: insert some logic here to account for 2D or 3D src_zgr
logger.info('Gathering grid information')
nc = GetFile(settings['src_zgr'])
SourceCoord.zt = np.squeeze(nc['gdept_0'][:])
nc.close()
# Define z at t/u/v points
z = zgrv.Depth(bdy_ind['t'].bdy_i,
bdy_ind['u'].bdy_i,
bdy_ind['v'].bdy_i, settings)
# TODO: put conditional here as we may want to keep data on parent
# vertical grid
DstCoord.depths = {'t': {}, 'u': {}, 'v': {}}
for grd in ['t', 'u', 'v']:
DstCoord.depths[grd]['bdy_H'] = np.nanmax(z.zpoints['w'+grd], axis=0)
DstCoord.depths[grd]['bdy_dz'] = np.diff(z.zpoints['w'+grd], axis=0)
DstCoord.depths[grd]['bdy_z'] = z.zpoints[grd]
logger.info('Depths defined')
# Gather vorizontal grid information
nc = GetFile(settings['src_hgr'])
SourceCoord.lon = nc['glamt'][:,:]
SourceCoord.lat = nc['gphit'][:,:]
try: # if they are masked array convert them to normal arrays
SourceCoord.lon = SourceCoord.lon.filled()
except:
pass
try:
SourceCoord.lat = SourceCoord.lat.filled()
except:
pass
nc.close()
DstCoord.lonlat = {'t': {}, 'u': {}, 'v': {}}
nc = GetFile(settings['dst_hgr'])
# Read and assign horizontal grid data
for grd in ['t', 'u', 'v']:
DstCoord.lonlat[grd]['lon'] = nc['glam' + grd][0, :, :]
DstCoord.lonlat[grd]['lat'] = nc['gphi' + grd][0, :, :]
nc.close()
logger.info('Grid coordinates defined')
# Identify lons/lats of the BDY points
DstCoord.bdy_lonlat = {'t': {}, 'u': {}, 'v': {}}
for grd in ['t', 'u', 'v']:
for l in ['lon', 'lat']:
DstCoord.bdy_lonlat[grd][l] = np.zeros(nbdy[grd])
for grd in ['t', 'u', 'v']:
for i in range(nbdy[grd]):
x = bdy_ind[grd].bdy_i[i, 1]
y = bdy_ind[grd].bdy_i[i, 0]
DstCoord.bdy_lonlat[grd]['lon'][i] = \
DstCoord.lonlat[grd]['lon'][x, y]
DstCoord.bdy_lonlat[grd]['lat'][i] = \
DstCoord.lonlat[grd]['lat'][x, y]
DstCoord.lonlat[grd]['lon'][DstCoord.lonlat[grd]['lon'] > 180] -= 360
logger.info('BDY lons/lats identified from %s', settings['dst_hgr'])
# Set up time information
t_adj = settings['src_time_adj'] # any time adjutments?
reader = factory.GetReader(settings['src_dir'],t_adj)
for grd in ['t', 'u', 'v']:
bdy_ind[grd].source_time = reader[grd]
unit_origin = '%d-01-01 00:00:00' %settings['base_year']
# Extract source data on dst grid
if settings['tide']:
if settings['tide_model']=='tpxo':
cons = tide.nemo_bdy_tpx7p2_rot(
Setup, DstCoord, bdy_ind['t'], bdy_ind['u'], bdy_ind['v'],
settings['clname'])
elif settings['tide_model']=='fes':
logger.error('Tidal model: %s, not yet implimented',
settings['tide_model'])
return
else:
logger.error('Tidal model: %s, not recognised',
settings['tide_model'])
return
write_tidal_data(Setup, DstCoord, bdy_ind, settings['clname'], cons)
logger.info('Tidal constituents written to file')
# Set the year and month range
yr_000 = settings['year_000']
yr_end = settings['year_end']
mn_000 = settings['month_000']
mn_end = settings['month_end']
if yr_000 > yr_end:
logging.error('Please check the nn_year_000 and nn_year_end '+
'values in input bdy file')
return
yrs = range(yr_000, yr_end+1)
if yr_end - yr_000 >= 1:
if range(mn_000, mn_end+1) < 12:
logger.info('Warning: All months will be extracted as the number '+
'of years is greater than 1')
mns = range(1,13)
else:
mn_000 = settings['month_000']
mn_end = settings['month_end']
if mn_end > 12 or mn_000 < 1:
logging.error('Please check the nn_month_000 and nn_month_end '+
'values in input bdy file')
return
mns = range(mn_000, mn_end+1)
# Enter the loop for each year and month extraction
logger.info('Entering extraction loop')
ln_dyn2d = settings['dyn2d']
ln_dyn3d = settings['dyn3d'] # are total or bc velocities required
ln_tra = settings['tra']
ln_ice = settings['ice']
# Define mapping of variables to grids with a dictionary
emap = {}
grd = [ 't', 'u', 'v']
pair = [ None, 'uv', 'uv'] # TODO: devolve this to the namelist?
# TODO: The following is a temporary stop gap to assign variables. In
# future we need a slicker way of determining the variables to extract.
# Perhaps by scraping the .ncml file - this way biogeochemical tracers
# can be included in the ln_tra = .true. option without having to
# explicitly declaring them.
var_in = {}
for g in range(len(grd)):
var_in[grd[g]] = []
if ln_tra:
var_in['t'].extend(['votemper', 'vosaline'])
if ln_dyn2d or ln_dyn3d:
var_in['u'].extend(['vozocrtx', 'vomecrty'])
var_in['v'].extend(['vozocrtx', 'vomecrty'])
if ln_dyn2d:
var_in['t'].extend(['sossheig'])
if ln_ice:
var_in['t'].extend(['ice1', 'ice2', 'ice3'])
# As variables are associated with grd there must be a filename attached
# to each variable
for g in range(len(grd)):
if len(var_in[grd[g]])>0:
emap[grd[g]]= {'variables': var_in[grd[g]],
'pair' : pair[g]}
extract_obj = {}
# Initialise the mapping indices for each grid
for key, val in emap.items():
extract_obj[key] = extract.Extract(Setup.settings,
SourceCoord, DstCoord,
bdy_ind, val['variables'],
key, val['pair'])
# TODO: Write the nearest neighbour parent grid point to each bdy point
# possibly to the coordinates.bdy.nc file to help with comparison
# plots later.
for year in yrs:
for month in mns:
for key, val in emap.items():
# Extract the data for a given month and year
extract_obj[key].extract_month(year, month)
# Interpolate/stretch in time if time frequecy is not a factor
# of a month and/or parent:child calendars differ
extract_obj[key].time_interp(year, month)
# Finally write to file
extract_obj[key].write_out(year, month, bdy_ind[key],
unit_origin)
logger.info('End NRCT Logging: '+time.asctime())
logger.info('==========================================')
def write_tidal_data(setup_var, dst_coord_var, grid, tide_cons, cons):
"""
This method writes the tidal data to netcdf file.
Args:
setup_var (list): Description of arg1
dst_coord_var (obj) : Description of arg1
grid (dict): Description of arg1
tide_cons (list): Description of arg1
cons (data): Description of arg1
"""
indx = 0
# Mapping of variable names to grid types
tmap = {}
grd = ['t', 'u', 'v']
var = ['z', 'u', 'v']
des = ['tidal elevation components for:',
'tidal east velocity components for:',
'tidal north velocity components for:']
for g in range(len(grd)):
bdy_r = grid[grd[g]].bdy_r
tmap[grd[g]]= {'nam': var[g], 'des': des[g],
'ind': np.where(bdy_r == 0),
'nx' : len(grid[grd[g]].bdy_i[bdy_r == 0, 0])}
# Write constituents to file
for tide_con in tide_cons:
const_name = setup_var.settings['clname'][tide_con]
const_name = const_name.replace("'", "").upper()
for key,val in tmap.items():
fout_tide = setup_var.settings['dst_dir']+ \
setup_var.settings['fn']+ \
'_bdytide_'+const_name+'_grd_'+ \
val['nam'].upper()+'.nc'
nemo_bdy_tide_ncgen.CreateBDYTideNetcdfFile(fout_tide,
val['nx'],
dst_coord_var.lonlat['t']['lon'].shape[1],
dst_coord_var.lonlat['t']['lon'].shape[0],
val['des']+tide_con,
setup_var.settings['fv'], key.upper())
ncpop.write_data_to_file(fout_tide, val['nam']+'1',
cons['cos'][val['nam']][indx])
ncpop.write_data_to_file(fout_tide, val['nam']+'2',
cons['sin'][val['nam']][indx])
ncpop.write_data_to_file(fout_tide, 'bdy_msk',
dst_coord_var.bdy_msk)
ncpop.write_data_to_file(fout_tide, 'nav_lon',
dst_coord_var.lonlat['t']['lon'])
ncpop.write_data_to_file(fout_tide, 'nav_lat',
dst_coord_var.lonlat['t']['lat'])
ncpop.write_data_to_file(fout_tide, 'nbidta',
grid[key].bdy_i[val['ind'], 0]+1)
ncpop.write_data_to_file(fout_tide, 'nbjdta',
grid[key].bdy_i[val['ind'], 1]+1)
ncpop.write_data_to_file(fout_tide, 'nbrdta',
grid[key].bdy_r[val['ind']]+1)
# Iterate over constituents
indx += 1
def _get_mask(Setup, mask_gui):
"""
Read mask information from file or open GUI.
This method reads the mask information from the netcdf file or opens a gui
to create a mask depending on the mask_gui input. The default mask data
uses the bathymetry and applies a 1pt halo.
Args:
Setup (list): settings for bdy
mask_gui (bool): whether use of the GUI is required
Returns:
numpy.array : a mask array of the regional domain
"""
# Initialise bdy_msk array
bdy_msk = None
if mask_gui: # Do we activate the GUI
# TODO: I do not like the use of _ for a dummy variable - better way?
_, mask = pynemo_settings_editor.open_settings_dialog(Setup)
bdy_msk = mask.data
Setup.refresh()
logger.info('Using GUI defined mask')
else: # Try an read mask from file
try:
if (Setup.bool_settings['mask_file'] and
Setup.settings['mask_file'] is not None):
mask = Mask_File(Setup.settings['bathy'],
Setup.settings['mask_file'])
bdy_msk = mask.data
logger.info('Using input mask file')
elif Setup.bool_settings['mask_file']:
logger.error('Mask file is not given')
return
else: # No mask file specified then use default 1px halo mask
logger.warning('Using default mask with bathymetry!!!!')
mask = Mask_File(Setup.settings['bathy'])
mask.apply_border_mask(Constants.DEFAULT_MASK_PIXELS)
bdy_msk = mask.data
except:
return
if np.amin(bdy_msk) == 0: # Mask is not set, so set border to 1px
logger.warning('Setting the mask to with a 1 grid point border')
QMessageBox.warning(None,'NRCT', 'Mask is not set, setting a 1 grid '+
'point border mask')
if (bdy_msk is not None and 1 < bdy_msk.shape[0] and
1 < bdy_msk.shape[1]):
tmp = np.ones(bdy_msk.shape, dtype=bool)
tmp[1:-1, 1:-1] = False
bdy_msk[tmp] = -1
return bdy_msk