Commit 823b6fbb authored by thopri's avatar thopri
Browse files

updated unit tests to include coord generation

parent 42e7c5a0
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 11 11:16:57 2020
example grid set up
@author: jdha
"""
import numpy as np
from netCDF4 import Dataset
def set_hgrid(dx, dy, jpi, jpj, zoffx, zoffy):
# Set grid positions [km]
latt = np.zeros((jpi, jpj))
lont = np.zeros((jpi, jpj))
lonu = np.zeros((jpi, jpj))
latu = np.zeros((jpi, jpj))
lonv = np.zeros((jpi, jpj))
latv = np.zeros((jpi, jpj))
lonf = np.zeros((jpi, jpj))
latf = np.zeros((jpi, jpj))
for i in range(0, jpi):
lont[i, :] = zoffx * dx * 1.e-3 + dx * 1.e-3 * np.float(i)
lonu[i, :] = zoffx * dx * 1.e-3 + dx * 1.e-3 * (np.float(i) + 0.5)
for j in range(0, jpj):
latt[:, j] = zoffy * dy * 1.e-3 + dy * 1.e-3 * float(j)
latv[:, j] = zoffy * dy * 1.e-3 + dy * 1.e-3 * (float(j) + 0.5)
lonv = lont
lonf = lonu
latu = latt
latf = latv
e1t = np.ones((jpi, jpj)) * dx
e2t = np.ones((jpi, jpj)) * dy
e1u = np.ones((jpi, jpj)) * dx
e2u = np.ones((jpi, jpj)) * dy
e1v = np.ones((jpi, jpj)) * dx
e2v = np.ones((jpi, jpj)) * dy
e1f = np.ones((jpi, jpj)) * dx
e2f = np.ones((jpi, jpj)) * dy
# Set bathymetry [m]:
batt = 500. + 0.5 * 1500. * (1.0 + np.tanh((lont - 40.) / 7.))
# Set surface mask:
ktop = np.zeros((jpi, jpj))
#ktop[1:jpi - 1, nghost + 1:jpj - nghost - 1] = 1
#batt = np.where((ktop == 0.), 0., batt)
# Set coriolis parameter:
ff_t = np.zeros((jpi, jpj))
ff_f = np.zeros((jpi, jpj))
grid_h = {'lont':lont, 'latt':latt, 'lonu':lonu, 'latu':latu, 'lonv':lonv, 'latv':latv, 'lonf':lonf, 'latf':latf, \
'e1t':e1t, 'e2t':e2t, 'e1u':e1u, 'e2u':e2u, 'e1v':e1v, 'e2v':e2v, 'e1f':e1f, 'e2f':e2f, 'batt':batt, \
'ktop':ktop, 'ff_f':ff_f, 'ff_t':ff_t,'jpi':jpi,'jpj':jpj,'dy':dy,'dx':dx}
return grid_h
def set_zgrid(grid_h,jpk,max_dep,min_dep,z_dim):
jpi = grid_h['jpi']
jpj = grid_h['jpj']
dept_1d = np.linspace(min_dep,max_dep,jpk)
e3t_1d = np.linspace(1.0,z_dim,jpk)
e3w_1d = np.linspace(1.0,z_dim,jpk)
e3t = np.zeros((jpi, jpj, len(e3t_1d)))
e3u = np.zeros((jpi, jpj, len(e3t_1d)))
e3v = np.zeros((jpi, jpj, len(e3t_1d)))
e3w = np.zeros((jpi, jpj, len(e3w_1d)))
e3f = np.zeros((jpi, jpj, len(e3t_1d)))
e3uw = np.zeros((jpi, jpj, len(e3t_1d)))
e3vw = np.zeros((jpi, jpj, len(e3t_1d)))
e3t[:] = e3t_1d
e3u[:] = e3t_1d
e3v[:] = e3t_1d
e3w[:] = e3w_1d
e3f[:] = e3t_1d
e3uw[:] = e3t_1d
e3vw[:] = e3t_1d
grid_z = {'dept_1d':dept_1d,'e3t_1d':e3t_1d,'e3w_1d':e3w_1d,'e3t':e3t,'e3u':e3u,'e3v':e3v,'e3w':e3w,'e3f':e3f, \
'e3uw':e3uw,'e3vw':e3vw}
return grid_z
def write_coord_H(fileout, grid_h):
'''
Writes out a NEMO formatted coordinates file.
Args:
fileout (string): filename
lon[t/u/v/f](np.ndarray): longitude array at [t/u/v/f]-points (2D)
lat[t/u/v/f](np.ndarray): latitude array at [t/u/v/f]-points (2D)
e1[t/u/v/f] (np.ndarray): zonal scale factors at [t/u/v/f]-points
e2[t/u/v/f] (np.ndarray): meridional scale factors at [t/u/v/f]-points
Returns:
'''
# Open pointer to netcdf file
dataset = Dataset(fileout, 'w', format='NETCDF4_CLASSIC')
# Get input size and create appropriate dimensions
# TODO: add some sort of error handling
nx, ny = np.shape(grid_h['lont'])
dataset.createDimension('x', nx)
dataset.createDimension('y', ny)
# Create Variables
nav_lon = dataset.createVariable('nav_lon', np.float32, ('y', 'x'))
nav_lat = dataset.createVariable('nav_lat', np.float32, ('y', 'x'))
glamt = dataset.createVariable('glamt', np.float64, ('y', 'x'))
glamu = dataset.createVariable('glamu', np.float64, ('y', 'x'))
glamv = dataset.createVariable('glamv', np.float64, ('y', 'x'))
glamf = dataset.createVariable('glamf', np.float64, ('y', 'x'))
gphit = dataset.createVariable('gphit', np.float64, ('y', 'x'))
gphiu = dataset.createVariable('gphiu', np.float64, ('y', 'x'))
gphiv = dataset.createVariable('gphiv', np.float64, ('y', 'x'))
gphif = dataset.createVariable('gphif', np.float64, ('y', 'x'))
ge1t = dataset.createVariable('e1t', np.float64, ('y', 'x'))
ge1u = dataset.createVariable('e1u', np.float64, ('y', 'x'))
ge1v = dataset.createVariable('e1v', np.float64, ('y', 'x'))
ge1f = dataset.createVariable('e1f', np.float64, ('y', 'x'))
ge2t = dataset.createVariable('e2t', np.float64, ('y', 'x'))
ge2u = dataset.createVariable('e2u', np.float64, ('y', 'x'))
ge2v = dataset.createVariable('e2v', np.float64, ('y', 'x'))
ge2f = dataset.createVariable('e2f', np.float64, ('y', 'x'))
nav_lon.units, nav_lon.long_name = 'km', 'X'
nav_lat.units, nav_lat.long_name = 'km', 'Y'
# Populate file with input data
# TODO: do we need to transpose?
nav_lon[:, :] = grid_h['lont'].T
nav_lat[:, :] = grid_h['latt'].T
glamt[:, :] = grid_h['lont'].T
glamu[:, :] = grid_h['lonu'].T
glamv[:, :] = grid_h['lonv'].T
glamf[:, :] = grid_h['lonf'].T
gphit[:, :] = grid_h['latt'].T
gphiu[:, :] = grid_h['latu'].T
gphiv[:, :] = grid_h['latv'].T
gphif[:, :] = grid_h['latf'].T
ge1t[:, :] = grid_h['e1t'].T
ge1u[:, :] = grid_h['e1u'].T
ge1v[:, :] = grid_h['e1v'].T
ge1f[:, :] = grid_h['e1f'].T
ge2t[:, :] = grid_h['e2t'].T
ge2u[:, :] = grid_h['e2u'].T
ge2v[:, :] = grid_h['e2v'].T
ge2f[:, :] = grid_h['e2f'].T
# Close off pointer
dataset.close()
return 0
def write_coord_Z(fileout, grid_h,grid_z):
'''
Writes out a NEMO formatted coordinates file.
Args:
Returns:
'''
# Open pointer to netcdf file
dataset = Dataset(fileout, 'w', format='NETCDF4_CLASSIC')
# Get input size and create appropriate dimensions
# TODO: add some sort of error handling
nx, ny, nz = np.shape(grid_z['e3t'])
dataset.createDimension('x', nx)
dataset.createDimension('y', ny)
dataset.createDimension('z', nz)
# Create Variables
nav_lon = dataset.createVariable('nav_lon', np.float32, ('y', 'x'))
nav_lat = dataset.createVariable('nav_lat', np.float32, ('y', 'x'))
nav_lev = dataset.createVariable('nav_lev', np.float32, 'z')
ge3t1d = dataset.createVariable('e3t_1d', np.float64, 'z')
ge3w1d = dataset.createVariable('e3w_1d', np.float64, 'z')
gbat = dataset.createVariable('mbathy', np.float64, ('y', 'x'))
ge3t = dataset.createVariable('e3t', np.float64, ('z','y', 'x'))
ge3u = dataset.createVariable('e3u', np.float64, ('z','y', 'x'))
ge3v = dataset.createVariable('e3v', np.float64, ('z','y', 'x'))
ge3f = dataset.createVariable('e3f', np.float64, ('z','y', 'x'))
ge3uw = dataset.createVariable('e3uw', np.float64, ('z', 'y', 'x'))
ge3vw = dataset.createVariable('e3vw', np.float64, ('z', 'y', 'x'))
nav_lon.units, nav_lon.long_name = 'km', 'X'
nav_lat.units, nav_lat.long_name = 'km', 'Y'
nav_lev.units, nav_lev.long_name = 'm', 'Z'
# Populate file with input data
# TODO: do we need to transpose?
nav_lon[:, :] = grid_h['lont'].T
nav_lat[:, :] = grid_h['latt'].T
nav_lev[:] = grid_z['dept_1d']
ge3t[:, :, :] = grid_z['e3t'].T
ge3u[:, :, :] = grid_z['e3u'].T
ge3v[:, :, :] = grid_z['e3v'].T
ge3f[:, :, :] = grid_z['e3f'].T
ge3uw[:, :, :] = grid_z['e3uw'].T
ge3vw[:, :, :] = grid_z['e3vw'].T
ge3t1d[:] = grid_z['e3t_1d']
ge3w1d[:] = grid_z['e3w_1d']
gbat[:,:] = grid_h['batt'].T
# Close off pointer
dataset.close()
return 0
def write_domcfg(fileout, ln_zco, ln_zps, ln_sco, ln_isfcav, jperio, bat,
lont, latt, lonu, latu, lonv, latv, lonf, latf,
e1t, e2t, e1u, e2u, e1v, e2v, e1f, e2f, ff_f, ff_t,
dept_1d, e3t_1d, e3w_1d, e3t, e3u, e3v, e3f, e3w, e3uw, e3vw,
ktop, kbot):
'''
Writes out a NEMO formatted domcfg file.
Args:
fileout (string): filename
ln_zco (logical): vertical coordinate flag [z-level]
ln_zps (logical): vertical coordinate flag [z-partial-step]
ln_sco (logical): vertical coordinate flag [sigma]
ln_isfcav (logical): ice cavity flag
jperio (int): domain type
bat (np.ndarray): bathymetry array at t-points (2D)
lon[t/u/v/f](np.ndarray): longitude array at [t/u/v/f]-points (2D)
lat[t/u/v/f](np.ndarray): latitude array at [t/u/v/f]-points (2D)
e1[t/u/v/f] (np.ndarray): zonal scale factors at [t/u/v/f]-points
e2[t/u/v/f] (np.ndarray): meridional scale factors at [t/u/v/f]-points
ff_[f/t] (np.ndarray): coriolis parameter at [t/f]-points
dept_1d (np.ndarray): 1D depth levels at t-points
e3[t/w]_1d (np.ndarray): 1D vertical scale factors at [t/w]-points
e3[t/u/v/f] (np.ndarray): vertcal scale factors at [t/u/v/f]-points
e3[w/uw/vw] (np.ndarray): vertcal scale factors at [w/uw/vw]-points
ktop (np.ndarray): upper most wet point
kbot (np.ndarray): lower most wet point
Returns:
'''
# Open pointer to netcdf file
dataset = Dataset(fileout, 'w', format='NETCDF4_CLASSIC')
# Get input size and create appropriate dimensions
# TODO: add some sort of error handling
nx, ny, nz = np.shape(e3t)
dataset.createDimension('x', nx)
dataset.createDimension('y', ny)
dataset.createDimension('z', nz)
# create Variables
nav_lon = dataset.createVariable('nav_lon', np.float32, ('y', 'x'))
nav_lat = dataset.createVariable('nav_lat', np.float32, ('y', 'x'))
nav_lev = dataset.createVariable('nav_lev', np.float32, 'z')
giglo = dataset.createVariable('jpiglo', "i4")
gjglo = dataset.createVariable('jpjglo', "i4")
gkglo = dataset.createVariable('jpkglo', "i4")
gperio = dataset.createVariable('jperio', "i4")
gzco = dataset.createVariable('ln_zco', "i4")
gzps = dataset.createVariable('ln_zps', "i4")
gsco = dataset.createVariable('ln_sco', "i4")
gcav = dataset.createVariable('ln_isfcav', "i4")
ge3t1d = dataset.createVariable('e3t_1d', np.float64, 'z')
ge3w1d = dataset.createVariable('e3w_1d', np.float64, 'z')
gitop = dataset.createVariable('top_level', "i4", ('y', 'x'))
gibot = dataset.createVariable('bottom_level', "i4", ('y', 'x'))
gbat = dataset.createVariable('Bathymetry', np.float64, ('y', 'x'))
glamt = dataset.createVariable('glamt', np.float64, ('y', 'x'))
glamu = dataset.createVariable('glamu', np.float64, ('y', 'x'))
glamv = dataset.createVariable('glamv', np.float64, ('y', 'x'))
glamf = dataset.createVariable('glamf', np.float64, ('y', 'x'))
gphit = dataset.createVariable('gphit', np.float64, ('y', 'x'))
gphiu = dataset.createVariable('gphiu', np.float64, ('y', 'x'))
gphiv = dataset.createVariable('gphiv', np.float64, ('y', 'x'))
gphif = dataset.createVariable('gphif', np.float64, ('y', 'x'))
ge1t = dataset.createVariable('e1t', np.float64, ('y', 'x'))
ge1u = dataset.createVariable('e1u', np.float64, ('y', 'x'))
ge1v = dataset.createVariable('e1v', np.float64, ('y', 'x'))
ge1f = dataset.createVariable('e1f', np.float64, ('y', 'x'))
ge2t = dataset.createVariable('e2t', np.float64, ('y', 'x'))
ge2u = dataset.createVariable('e2u', np.float64, ('y', 'x'))
ge2v = dataset.createVariable('e2v', np.float64, ('y', 'x'))
ge2f = dataset.createVariable('e2f', np.float64, ('y', 'x'))
gfff = dataset.createVariable('ff_f', np.float64, ('y', 'x'))
gfft = dataset.createVariable('ff_t', np.float64, ('y', 'x'))
ge3t = dataset.createVariable('e3t_0', np.float64, ('z', 'y', 'x'))
ge3w = dataset.createVariable('e3w_0', np.float64, ('z', 'y', 'x'))
ge3u = dataset.createVariable('e3u_0', np.float64, ('z', 'y', 'x'))
ge3v = dataset.createVariable('e3v_0', np.float64, ('z', 'y', 'x'))
ge3f = dataset.createVariable('e3f_0', np.float64, ('z', 'y', 'x'))
ge3uw = dataset.createVariable('e3uw_0', np.float64, ('z', 'y', 'x'))
ge3vw = dataset.createVariable('e3vw_0', np.float64, ('z', 'y', 'x'))
nav_lon.units, nav_lon.long_name = 'km', 'X'
nav_lat.units, nav_lat.long_name = 'km', 'Y'
# Populate file with input data
giglo[:] = nx
gjglo[:] = ny
gkglo[:] = nz
gzco[:] = ln_zco
gzps[:] = ln_zps
gsco[:] = ln_sco
gcav[:] = ln_isfcav
gperio[:] = jperio
# TODO: do we need to transpose?
nav_lon[:, :] = lont.T
nav_lat[:, :] = latt.T
nav_lev[:] = dept_1d
ge3t1d[:] = e3t_1d
ge3w1d[:] = e3w_1d
gitop[:, :] = ktop.T
gibot[:, :] = kbot.T
gbat[:, :] = bat.T
glamt[:, :] = lont.T
glamu[:, :] = lonu.T
glamv[:, :] = lonv.T
glamf[:, :] = lonf.T
gphit[:, :] = latt.T
gphiu[:, :] = latu.T
gphiv[:, :] = latv.T
gphif[:, :] = latf.T
ge1t[:, :] = e1t.T
ge1u[:, :] = e1u.T
ge1v[:, :] = e1v.T
ge1f[:, :] = e1f.T
ge2t[:, :] = e2t.T
ge2u[:, :] = e2u.T
ge2v[:, :] = e2v.T
ge2f[:, :] = e2f.T
gfff[:, :] = ff_f.T
gfft[:, :] = ff_t.T
ge3t[:, :, :] = e3t.T
ge3w[:, :, :] = e3w.T
ge3u[:, :, :] = e3u.T
ge3v[:, :, :] = e3v.T
ge3f[:, :, :] = e3f.T
ge3uw[:, :, :] = e3uw.T
ge3vw[:, :, :] = e3vw.T
# Close off pointer
dataset.close()
......@@ -6,6 +6,7 @@ occurs, the results are then plotted in a figure showing original (blue points)
The source coordinate grid is also plotted (green).
"""
from math import cos,sin,radians
import numpy as np
import xarray as xr
......@@ -13,6 +14,8 @@ import matplotlib.pyplot as plt
import cartopy
import cartopy.crs as ccrs
import unit_tests.coord_gen as cg
# TODO: add in auto max and min lat and lon
# TODO: remove hard coded file names and directories.
......@@ -40,37 +43,37 @@ def rotate_around_point(lat_in,lon_in, radians , origin=(0, 0)):
def plot_grids(lat_in,lon_in,new_lat,new_lon,src_lat,src_lon):
# define lat and lon extents (define in future using input values?)
maxlat = 72
minlat = 32
maxlon = 18
minlon = -28
#maxlat = 72
#minlat = 32
#maxlon = 18
#minlon = -28
plt.figure(figsize=[18, 8]) # a new figure window
ax = plt.subplot(121, projection=ccrs.PlateCarree()) # specify (nrows, ncols, axnum)
ax.set_extent([minlon,maxlon,minlat,maxlat],crs=ccrs.PlateCarree()) #set extent
ax.set_title('Original Grid', fontsize=20,y=1.05) #set title
ax.add_feature(cartopy.feature.LAND, zorder=0) # add land polygon
ax.add_feature(cartopy.feature.COASTLINE, zorder=10) # add coastline polyline
gl = ax.gridlines(crs=ccrs.PlateCarree(), linewidth=2, color='black', alpha=0.5, linestyle='--', draw_labels=True)
ax = plt.subplot(121)#, projection=ccrs.PlateCarree()) # specify (nrows, ncols, axnum)
#ax.set_extent([minlon,maxlon,minlat,maxlat],crs=ccrs.PlateCarree()) #set extent
#ax.set_title('Original Grid', fontsize=20,y=1.05) #set title
#ax.add_feature(cartopy.feature.LAND, zorder=0) # add land polygon
#ax.add_feature(cartopy.feature.COASTLINE, zorder=10) # add coastline polyline
#gl = ax.gridlines(crs=ccrs.PlateCarree(), linewidth=2, color='black', alpha=0.5, linestyle='--', draw_labels=True)
ax1 = plt.subplot(122, projection=ccrs.PlateCarree()) # specify (nrows, ncols, axnum)
ax1.set_extent([minlon,maxlon,minlat,maxlat],crs=ccrs.PlateCarree()) #set extent
ax1.set_title('Rotated Grid', fontsize=20,y=1.05) #set title
ax1.add_feature(cartopy.feature.LAND, zorder=0) # add land polygon
ax1.add_feature(cartopy.feature.COASTLINE, zorder=10) # add coastline polyline
gl1 = ax1.gridlines(crs=ccrs.PlateCarree(), linewidth=2, color='black', alpha=0.5, linestyle='--', draw_labels=True)
ax1 = plt.subplot(122)#, projection=ccrs.PlateCarree()) # specify (nrows, ncols, axnum)
#ax1.set_extent([minlon,maxlon,minlat,maxlat],crs=ccrs.PlateCarree()) #set extent
#ax1.set_title('Rotated Grid', fontsize=20,y=1.05) #set title
#ax1.add_feature(cartopy.feature.LAND, zorder=0) # add land polygon
#ax1.add_feature(cartopy.feature.COASTLINE, zorder=10) # add coastline polyline
#gl1 = ax1.gridlines(crs=ccrs.PlateCarree(), linewidth=2, color='black', alpha=0.5, linestyle='--', draw_labels=True)
# tile 1D lat and lon to 2D arrays for plotting (src lat and lon only)
src_lon = np.tile(src_lon, (np.shape(src_lat)[0], 1))
src_lat = np.tile(src_lat, (np.shape(src_lon)[1], 1))
src_lat = np.rot90(src_lat)
#src_lon = np.tile(src_lon, (np.shape(src_lat)[0], 1))
#src_lat = np.tile(src_lat, (np.shape(src_lon)[1], 1))
#src_lat = np.rot90(src_lat)
# plot lat and lon for all grids
ax.plot(lon_in, lat_in, color='blue', marker='.')
ax.plot(src_lon,src_lat, color='green', marker='.')
ax1.plot(new_lon,new_lat, color='red', marker='.')
ax1.plot(src_lon,src_lat, color='green',marker='.')
ax.plot(lon_in, lat_in, color='blue', marker='.', linestyle="")
ax.plot(src_lon,src_lat, color='green', marker='o', linestyle="")
ax1.plot(new_lon,new_lat, color='red', marker='.', linestyle="")
ax1.plot(src_lon,src_lat, color='green',marker='o',linestyle="")
# tweak margins of subplots as tight layout doesn't work
plt.subplots_adjust(left=0.01, right=1, top=0.9, bottom=0.05,wspace=0.01)
......@@ -78,24 +81,62 @@ def plot_grids(lat_in,lon_in,new_lat,new_lon,src_lat,src_lon):
def _main():
#open source (parent) and destination (child) grids
ds = xr.open_dataset('unit_tests/test_data/dst_hgr_zps.nc')
src = xr.open_dataset('unit_tests/test_data/src_coordinates.nc')
#Source Coords
dx = 2000 # units in km
dy = 2000 # units in Km
jpi = 10
jpj = 10
zoffx = 0
zoffy = 0
jpk = 10
max_dep = 100
min_dep = 10
z_end_dim = 10.0
h_fname = 'unit_tests/test_data/test_src__hgr_zps.nc'
z_fname = 'unit_tests/test_data/test_src_zgr_zps.nc'
grid_h1 = cg.set_hgrid(dx,dy,jpi,jpj,zoffx,zoffy)
grid_z1 = cg.set_zgrid(grid_h1,jpk,max_dep,min_dep,z_end_dim)
write_coord_H = cg.write_coord_H(h_fname,grid_h1)
write_coord_Z = cg.write_coord_Z(z_fname,grid_h1,grid_z1)
if write_coord_H + write_coord_Z == 0:
print("Success!")
#Dst Coords
dx = 100 # units in km
dy = 100 # units in Km
jpi = 90
jpj = 90
zoffx = 0
zoffy = 0
jpk = 10
max_dep = 100
min_dep = 10
z_end_dim = 10.0
h_fname = 'unit_tests/test_data/test_dst_hgr_zps.nc'
z_fname = 'unit_tests/test_data/test_dst_zgr_zps.nc'
grid_h2 = cg.set_hgrid(dx,dy,jpi,jpj,zoffx,zoffy)
grid_z2 = cg.set_zgrid(grid_h2,jpk,max_dep,min_dep,z_end_dim)
write_coord_H = cg.write_coord_H(h_fname,grid_h2)
write_coord_Z = cg.write_coord_Z(z_fname,grid_h2,grid_z2)
if write_coord_H + write_coord_Z == 0:
print("Success!")
# set rotation and origin point
rot = 45
theta = radians(rot)
origin = (54, -6)
# generate new lat and lon
new_lat,new_lon = rotate_around_point(ds.nav_lat.values[:],ds.nav_lon.values[:],theta,origin)
origin = (zoffx,zoffy)
new_lat,new_lon = rotate_around_point(grid_h2['latt'],grid_h2['lont'],theta,origin)
# plot orginal, rotatated and source lat and lon
plot_grids(ds.nav_lat.values[:],ds.nav_lon.values[:],new_lat,new_lon,src.latitude.values[:],src.longitude.values[:])
plot_grids(grid_h2['latt'],grid_h2['lont'],new_lat,new_lon,grid_h1['latt'],grid_h1['lont'])
# save new lat lon to dataset
ds.nav_lat.values[:], ds.nav_lon.values[:] = new_lat,new_lon
#ds.nav_lat.values[:], ds.nav_lon.values[:] = new_lat,new_lon
# save dataset to netcdf
ds.to_netcdf('unit_tests/test_data/rot_'+str(rot)+'_dst_hgr_zps.nc')
#ds.to_netcdf('unit_tests/test_data/rot_'+str(rot)+'_dst_hgr_zps.nc')
# close data files
ds.close()
src.close()
#ds.close()
#src.close()
if __name__ == '__main__':
_main()
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment