toy_ASFC.py 30 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
"""
example of running AirSeaFluxCode with
1. R/V data (data_all.csv) or
2. one day era5 hourly data (era5_r360x180.nc)
compute fluxes
output NetCDF4
and statistics in stats.txt

@author: sbiri
"""
#%% import packages
import matplotlib.pyplot as plt
import netCDF4 as nc
import numpy as np
import pandas as pd
from AirSeaFluxCode import AirSeaFluxCode
import time
from tabulate import tabulate
#%%
def reject_outliers(data, m=2):
    x = np.copy(data)
22
    x = np.where(np.abs(x-np.nanmean(x)) < m*np.nanstd(x), x, np.nan)
23 24 25 26 27
    return x


def toy_ASFC(inF, outF, gustIn, cskinIn, tolIn, meth):
    """
28 29
    Example routine of how to run AirSeaFluxCode with the test data given
    and save output either as .csv or NetCDF
30 31 32 33 34 35 36 37 38 39 40 41

    Parameters
    ----------
    inF : str
        input filename either data_all.csv or era5_r360x180.nc
    outF : str
        output filename
    gustIn : float
        gustiness option e.g. [1, 1.2, 800]
    cskinIn : int
        cool skin option input 0 or 1
    tolIn : float
42
        tolerance input option e.g. ['all', 0.01, 0.01, 1e-05, 1e-3, 0.1, 0.1]
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    meth : str
        parametrisation method option

    Returns
    -------
    res : float
        AirSeaFluxCode output
    lon : float
        longitude from input netCDF file
    lat : float
        latitude from input netCDF file

    """
    if (inF == "data_all.csv"):
        #%% load data_all
        inDt = pd.read_csv("data_all.csv")
        date = np.asarray(inDt["Date"])
        lon = np.asarray(inDt["Longitude"])
        lat = np.asarray(inDt["Latitude"])
        spd = np.asarray(inDt["Wind speed"])
        t = np.asarray(inDt["Air temperature"])
        sst = np.asarray(inDt["SST"])
        rh = np.asarray(inDt["RH"])
        p = np.asarray(inDt["P"])
        sw = np.asarray(inDt["Rs"])
        hu = np.asarray(inDt["zu"])
        ht = np.asarray(inDt["zt"])
        hin = np.array([hu, ht, ht])
        del hu, ht, inDt
        #%% run AirSeaFluxCode
73
        res = AirSeaFluxCode(spd, t, sst, lat=lat, hum=['rh', rh], P=p,
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
                             hin=hin, Rs=sw, tol=tolIn, gust=gustIn,
                             cskin=cskinIn, meth=meth, L="ecmwf", n=30)

    elif (inF == 'era5_r360x180.nc'):
        #%% load era5_r360x180.nc
        fid = nc.Dataset(inF)
        lon = np.array(fid.variables["lon"])
        lat = np.array(fid.variables["lat"])
        T = np.array(fid.variables["t2m"])
        tim = np.array(fid.variables["time"])
        Td = np.array(fid.variables["d2m"])
        sst = np.array(fid.variables["sst"])
        sst = np.where(sst < -100, np.nan, sst)
        p = np.array(fid.variables["msl"])/100 # to set hPa
        lw = np.array(fid.variables["strd"])/60/60
        sw = np.array(fid.variables["ssrd"])/60/60
        u = np.array(fid.variables["u10"])
        v = np.array(fid.variables["v10"])
        lsm = np.array(fid.variables["lsm"])
93
        icon = np.array(fid.variables["siconc"])
94 95 96 97
        fid.close()
        spd = np.sqrt(np.power(u, 2)+np.power(v, 2))
        del u, v, fid
        lsm = np.where(lsm > 0, np.nan, 1) # reverse 0 on land 1 over ocean
98 99
        icon = np.where(icon < 0, np.nan, 1)
        msk = lsm*icon
100 101 102
        hin = np.array([10, 2, 2])
        latIn = np.tile(lat, (len(lon), 1)).T.reshape(len(lon)*len(lat))
        date = np.copy(tim)
103

104
        #%% run AirSeaFluxCode
105 106
        res = np.zeros((len(tim),len(lon)*len(lat), 39))
        flg = np.empty((len(tim),len(lon)*len(lat)), dtype="object")
107 108
        # reshape input and run code
        for x in range(len(tim)):
109
            temp = AirSeaFluxCode(spd.reshape(len(tim), len(lon)*len(lat))[x, :],
110 111 112 113 114 115 116 117 118 119
                               T.reshape(len(tim), len(lon)*len(lat))[x, :],
                               sst.reshape(len(tim), len(lon)*len(lat))[x, :],
                               lat=latIn,
                               hum=['Td', Td.reshape(len(tim), len(lon)*len(lat))[x, :]],
                               P=p.reshape(len(tim), len(lon)*len(lat))[x, :],
                               hin=hin,
                               Rs=sw.reshape(len(tim), len(lon)*len(lat))[x, :],
                               Rl=lw.reshape(len(tim), len(lon)*len(lat))[x, :],
                               gust=gustIn, cskin=cskinIn, tol=tolIn, qmeth='WMO',
                               meth=meth, n=30, L="ecmwf")
120
            a = temp.loc[:,"tau":"rh"]
121
            a = a.to_numpy()
122
            flg[x, :] = temp["flag"]
123
            res[x, :, :] = a
124 125 126 127 128
            del a, temp
            n = np.shape(res)
            res = np.asarray([res[:, :, i]*msk.reshape(n[0], n[1])
                              for i in range(39)])
            res = np.moveaxis(res, 0, -1)
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

    if (outF[-3:] == '.nc'):
        if (inF == 'era5_r360x180.nc'):
            #%% save NetCDF4
            fid = nc.Dataset(outF,'w', format='NETCDF4')
            fid.createDimension('lon', len(lon))
            fid.createDimension('lat', len(lat))
            fid.createDimension('time', None)
            longitude = fid.createVariable('lon', 'f4', 'lon')
            latitude = fid.createVariable('lat', 'f4', 'lat')
            Date = fid.createVariable('Date', 'i4', 'time')
            tau = fid.createVariable('tau', 'f4', ('time','lat','lon'))
            sensible = fid.createVariable('shf', 'f4', ('time','lat','lon'))
            latent = fid.createVariable('lhf', 'f4', ('time','lat','lon'))
            monob = fid.createVariable('MO', 'f4', ('time','lat','lon'))
            cd = fid.createVariable('cd', 'f4', ('time','lat','lon'))
            cdn = fid.createVariable('cdn', 'f4', ('time','lat','lon'))
            ct = fid.createVariable('ct', 'f4', ('time','lat','lon'))
            ctn = fid.createVariable('ctn', 'f4', ('time','lat','lon'))
            cq = fid.createVariable('cq', 'f4', ('time','lat','lon'))
            cqn = fid.createVariable('cqn', 'f4', ('time','lat','lon'))
            tsrv = fid.createVariable('tsrv', 'f4', ('time','lat','lon'))
            tsr = fid.createVariable('tsr', 'f4', ('time','lat','lon'))
            qsr = fid.createVariable('qsr', 'f4', ('time','lat','lon'))
            usr = fid.createVariable('usr', 'f4', ('time','lat','lon'))
            psim = fid.createVariable('psim', 'f4', ('time','lat','lon'))
            psit = fid.createVariable('psit', 'f4', ('time','lat','lon'))
            psiq = fid.createVariable('psiq', 'f4', ('time','lat','lon'))
            u10n = fid.createVariable('u10n', 'f4', ('time','lat','lon'))
            t10n = fid.createVariable('t10n', 'f4', ('time','lat','lon'))
            tv10n = fid.createVariable('tv10n', 'f4', ('time','lat','lon'))
            q10n = fid.createVariable('q10n', 'f4', ('time','lat','lon'))
            zo = fid.createVariable('zo', 'f4', ('time','lat','lon'))
            zot = fid.createVariable('zot', 'f4', ('time','lat','lon'))
            zoq = fid.createVariable('zoq', 'f4', ('time','lat','lon'))
            urefs = fid.createVariable('uref', 'f4', ('time','lat','lon'))
            trefs = fid.createVariable('tref', 'f4', ('time','lat','lon'))
            qrefs = fid.createVariable('qref', 'f4', ('time','lat','lon'))
            itera = fid.createVariable('iter', 'i4', ('time','lat','lon'))
            dter = fid.createVariable('dter', 'f4', ('time','lat','lon'))
            dqer = fid.createVariable('dqer', 'f4', ('time','lat','lon'))
            dtwl = fid.createVariable('dtwl', 'f4', ('time','lat','lon'))
            qair = fid.createVariable('qair', 'f4', ('time','lat','lon'))
            qsea = fid.createVariable('qsea', 'f4', ('time','lat','lon'))
            Rl = fid.createVariable('Rl', 'f4', ('time','lat','lon'))
            Rs = fid.createVariable('Rs', 'f4', ('time','lat','lon'))
            Rnl = fid.createVariable('Rnl', 'f4', ('time','lat','lon'))
176 177 178 179
            ug = fid.createVariable('ug', 'f4', ('time','lat','lon'))
            Rib = fid.createVariable('Rib', 'f4', ('time','lat','lon'))
            rh = fid.createVariable('rh', 'f4', ('time','lat','lon'))
            flag = fid.createVariable('flag', 'S1', ('time','lat','lon'))
180 181 182 183

            longitude[:] = lon
            latitude[:] = lat
            Date[:] = tim
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
            tau[:] = res[:, :, 0].reshape((len(tim), len(lat), len(lon)))*msk
            sensible[:] = res[:, :, 1].reshape((len(tim), len(lat), len(lon)))*msk
            latent[:] = res[:, :, 2].reshape((len(tim), len(lat), len(lon)))*msk
            monob[:] = res[:, :, 3].reshape((len(tim), len(lat), len(lon)))*msk
            cd[:] = res[:, :, 4].reshape((len(tim), len(lat), len(lon)))*msk
            cdn[:] = res[:, :, 5].reshape((len(tim), len(lat), len(lon)))*msk
            ct[:] = res[:, :, 6].reshape((len(tim), len(lat), len(lon)))*msk
            ctn[:] = res[:, :, 7].reshape((len(tim), len(lat), len(lon)))*msk
            cq[:] = res[:, :, 8].reshape((len(tim), len(lat), len(lon)))*msk
            cqn[:] = res[:, :, 9].reshape((len(tim), len(lat), len(lon)))*msk
            tsrv[:] = res[:, :, 10].reshape((len(tim), len(lat), len(lon)))*msk
            tsr[:] = res[:, :, 11].reshape((len(tim), len(lat), len(lon)))*msk
            qsr[:] = res[:, :, 12].reshape((len(tim), len(lat), len(lon)))*msk
            usr[:] = res[:, :, 13].reshape((len(tim), len(lat), len(lon)))*msk
            psim[:] = res[:, :, 14].reshape((len(tim), len(lat), len(lon)))*msk
            psit[:] = res[:, :, 15].reshape((len(tim), len(lat), len(lon)))*msk
            psiq[:] = res[:, :, 16].reshape((len(tim), len(lat), len(lon)))*msk
            u10n[:] = res[:, :, 17].reshape((len(tim), len(lat), len(lon)))*msk
            t10n[:] = res[:, :, 18].reshape((len(tim), len(lat), len(lon)))*msk
            tv10n[:] = res[:, :, 19].reshape((len(tim), len(lat), len(lon)))*msk
            q10n[:] = res[:, :, 20].reshape((len(tim), len(lat), len(lon)))*msk
            zo[:] = res[:, :, 21].reshape((len(tim), len(lat), len(lon)))*msk
            zot[:] = res[:, :, 22].reshape((len(tim), len(lat), len(lon)))*msk
            zoq[:] = res[:, :, 23].reshape((len(tim), len(lat), len(lon)))*msk
            urefs[:] = res[:, :, 24].reshape((len(tim), len(lat), len(lon)))*msk
            trefs[:] = res[:, :, 25].reshape((len(tim), len(lat), len(lon)))*msk
            qrefs[:] = res[:, :, 26].reshape((len(tim), len(lat), len(lon)))*msk
            itera[:] = res[:, :, 27].reshape((len(tim), len(lat), len(lon)))*msk
            dter[:] = res[:, :, 28].reshape((len(tim), len(lat), len(lon)))*msk
            dqer[:] = res[:, :, 29].reshape((len(tim), len(lat), len(lon)))*msk
            dtwl[:] = res[:, :, 30].reshape((len(tim), len(lat), len(lon)))*msk
            qair[:] = res[:, :, 31].reshape((len(tim), len(lat), len(lon)))*msk
            qsea[:] = res[:, :, 32].reshape((len(tim), len(lat), len(lon)))*msk
            Rl[:] = res[:, :, 33].reshape((len(tim), len(lat), len(lon)))*msk
            Rs[:] = res[:, :, 34].reshape((len(tim), len(lat), len(lon)))*msk
            Rnl[:] = res[:, :, 35].reshape((len(tim), len(lat), len(lon)))*msk
            ug[:] = res[:, :, 36].reshape((len(tim), len(lat), len(lon)))*msk
            Rib[:] = res[:, :, 37].reshape((len(tim), len(lat), len(lon)))*msk
            rh[:] = res[:, :, 38].reshape((len(tim), len(lat), len(lon)))*msk
            flag[:] = flg.reshape((len(tim), len(lat), len(lon)))

225 226 227 228
            longitude.long_name = 'Longitude'
            longitude.units = 'degrees East'
            latitude.long_name = 'Latitude'
            latitude.units = 'degrees North'
sbiri's avatar
sbiri committed
229 230
            Date.long_name = "gregorian"
            Date.units = "hours since 1900-01-01 00:00:00.0"
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
            tau.long_name = 'Wind stress'
            tau.units = 'N/m^2'
            sensible.long_name = 'Sensible heat fluxe'
            sensible.units = 'W/m^2'
            latent.long_name = 'Latent heat flux'
            latent.units = 'W/m^2'
            monob.long_name = 'Monin-Obukhov length'
            monob.units = 'm'
            cd.long_name = 'Drag coefficient'
            cd.units = ''
            cdn.long_name = 'Neutral Drag coefficient'
            cdn.units = ''
            ct.long_name = 'Heat exchange coefficient'
            ct.units = ''
            ctn.long_name = 'Neutral Heat exchange coefficient'
            ctn.units = ''
            cq.long_name = 'Moisture exchange coefficient'
            cq.units = ''
            cqn.long_name = 'Neutral Moisture exchange coefficient'
            cqn.units = ''
            tsrv.long_name = 'star virtual temperature'
            tsrv.units = 'degrees Celsius'
            tsr.long_name = 'star temperature'
            tsr.units = 'degrees Celsius'
            qsr.long_name = 'star specific humidity'
            qsr.units = 'gr/kgr'
            usr.long_name = 'friction velocity'
            usr.units = 'm/s'
            psim.long_name = 'Momentum stability function'
            psit.long_name = 'Heat stability function'
            u10n.long_name = '10m neutral wind speed'
            u10n.units = 'm/s'
            t10n.long_name = '10m neutral temperature'
            t10n.units = 'degrees Celsius'
            tv10n.long_name = '10m neutral virtual temperature'
            tv10n.units = 'degrees Celsius'
            q10n.long_name = '10m neutral specific humidity'
268
            q10n.units = 'kgr/kgr'
269 270 271 272 273 274 275 276 277 278 279
            zo.long_name = 'momentum roughness length'
            zo.units = 'm'
            zot.long_name = 'temperature roughness length'
            zot.units = 'm'
            zoq.long_name = 'moisture roughness length'
            zoq.units = 'm'
            urefs.long_name = 'wind speed at ref height'
            urefs.units = 'm/s'
            trefs.long_name = 'temperature at ref height'
            trefs.units = 'degrees Celsius'
            qrefs.long_name = 'specific humidity at ref height'
280
            qrefs.units = 'kgr/kgr'
281
            qair.long_name = 'specific humidity of air'
282
            qair.units = 'kgr/kgr'
283
            qsea.long_name = 'specific humidity over water'
284
            qsea.units = 'kgr/kgr'
285
            itera.long_name = 'number of iterations'
286 287 288 289 290 291 292 293 294 295 296 297 298 299
            Rl.long_name = 'downward longwave radiation'
            Rl.units = 'W/m^2'
            Rs.long_name = 'downward shortwave radiation'
            Rs.units = 'W/m^2'
            Rnl.long_name = 'downward net longwave radiation'
            Rnl.units = 'W/m^2'
            ug.long_name = 'gust wind speed'
            ug.units = 'm/s'
            Rib.long_name = 'bulk Richardson number'
            rh.long_name = 'relative humidity'
            rh.units = '%'
            flag.long_name = ('flag "n" normal, "u": u10n < 0, "q": q10n < 0,'
                              '"l": zol<0.01, "m": missing, "i": points that'
                              'have not converged')
300 301 302 303 304 305
            fid.close()
            #%% delete variables
            del longitude, latitude, Date, tau, sensible, latent, monob, cd, cdn
            del ct, ctn, cq, cqn, tsrv, tsr, qsr, usr, psim, psit, psiq, u10n, t10n
            del tv10n, q10n, zo, zot, zoq, urefs, trefs, qrefs, itera, dter, dqer
            del qair, qsea, Rl, Rs, Rnl, dtwl
306
            del tim, T, Td, p, lw, sw, lsm, spd, hin, latIn, icon, msk
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        else:
            #%% save NetCDF4
            fid = nc.Dataset(outF,'w', format='NETCDF4')
            fid.createDimension('lon', len(lon))
            fid.createDimension('lat', len(lat))
            fid.createDimension('time', None)
            longitude = fid.createVariable('lon', 'f4', 'lon')
            latitude = fid.createVariable('lat', 'f4', 'lat')
            Date = fid.createVariable('Date', 'i4', 'time')
            tau = fid.createVariable('tau', 'f4', 'time')
            sensible = fid.createVariable('shf', 'f4', 'time')
            latent = fid.createVariable('lhf', 'f4', 'time')
            monob = fid.createVariable('MO', 'f4', 'time')
            cd = fid.createVariable('cd', 'f4', 'time')
            cdn = fid.createVariable('cdn', 'f4', 'time')
            ct = fid.createVariable('ct', 'f4', 'time')
            ctn = fid.createVariable('ctn', 'f4', 'time')
            cq = fid.createVariable('cq', 'f4', 'time')
            cqn = fid.createVariable('cqn', 'f4', 'time')
            tsrv = fid.createVariable('tsrv', 'f4', 'time')
            tsr = fid.createVariable('tsr', 'f4', 'time')
            qsr = fid.createVariable('qsr', 'f4', 'time')
            usr = fid.createVariable('usr', 'f4', 'time')
            psim = fid.createVariable('psim', 'f4', 'time')
            psit = fid.createVariable('psit', 'f4', 'time')
            psiq = fid.createVariable('psiq', 'f4', 'time')
            u10n = fid.createVariable('u10n', 'f4', 'time')
            t10n = fid.createVariable('t10n', 'f4', 'time')
            tv10n = fid.createVariable('tv10n', 'f4', 'time')
            q10n = fid.createVariable('q10n', 'f4', 'time')
            zo = fid.createVariable('zo', 'f4', 'time')
            zot = fid.createVariable('zot', 'f4', 'time')
            zoq = fid.createVariable('zoq', 'f4', 'time')
            urefs = fid.createVariable('uref', 'f4', 'time')
            trefs = fid.createVariable('tref', 'f4', 'time')
            qrefs = fid.createVariable('qref', 'f4', 'time')
            itera = fid.createVariable('iter', 'i4', 'time')
            dter = fid.createVariable('dter', 'f4', 'time')
            dqer = fid.createVariable('dqer', 'f4', 'time')
346
            dtwl = fid.createVariable('dtwl', 'f4', 'time')
347 348 349 350 351
            qair = fid.createVariable('qair', 'f4', 'time')
            qsea = fid.createVariable('qsea', 'f4', 'time')
            Rl = fid.createVariable('Rl', 'f4', 'time')
            Rs = fid.createVariable('Rs', 'f4', 'time')
            Rnl = fid.createVariable('Rnl', 'f4', 'time')
352 353 354 355
            ug = fid.createVariable('ug', 'f4', 'time')
            Rib = fid.createVariable('Rib', 'f4', 'time')
            rh = fid.createVariable('rh', 'f4', 'time')
            flag = fid.createVariable('flag', 'S1', 'time')
356 357 358 359

            longitude[:] = lon
            latitude[:] = lat
            Date[:] = date
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
            tau[:] = res["tau"]
            sensible[:] = res["shf"]
            latent[:] = res["lhf"]
            monob[:] = res["L"]
            cd[:] = res["cd"]
            cdn[:] = res["cdn"]
            ct[:] = res["ct"]
            ctn[:] = res["ctn"]
            cq[:] = res["cq"]
            cqn[:] = res["cqn"]
            tsrv[:] = res["tsrv"]
            tsr[:] = res["tsr"]
            qsr[:] = res["qsr"]
            usr[:] = res["usr"]
            psim[:] = res["psim"]
            psit[:] = res["psit"]
            psiq[:] = res["psiq"]
            u10n[:] = res["u10n"]
            t10n[:] = res["t10n"]
            tv10n[:] = res["tv10n"]
            q10n[:] = res["q10n"]
            zo[:] = res["zo"]
            zot[:] = res["zot"]
            zoq[:] = res["zoq"]
            urefs[:] = res["uref"]
            trefs[:] = res["tref"]
            qrefs[:] = res["qref"]
            itera[:] = res["iteration"]
            dter[:] = res["dter"]
            dqer[:] = res["dqer"]
            dtwl[:] = res["dtwl"]
            qair[:] = res["qair"]
            qsea[:] = res["qsea"]
            Rl[:] = res["Rl"]
            Rs[:] = res["Rs"]
            Rnl[:] = res["Rnl"]
            ug[:] = res["ug"]
            Rib[:] = res["Rib"]
            rh[:] = res["rh"]
            flag[:] = res["flag"]

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
            longitude.long_name = 'Longitude'
            longitude.units = 'degrees East'
            latitude.long_name = 'Latitude'
            latitude.units = 'degrees North'
            Date.long_name = "calendar date"
            Date.units = "YYYYMMDD UTC"
            tau.long_name = 'Wind stress'
            tau.units = 'N/m^2'
            sensible.long_name = 'Sensible heat fluxe'
            sensible.units = 'W/m^2'
            latent.long_name = 'Latent heat flux'
            latent.units = 'W/m^2'
            monob.long_name = 'Monin-Obukhov length'
            monob.units = 'm'
            cd.long_name = 'Drag coefficient'
            cd.units = ''
            cdn.long_name = 'Neutral Drag coefficient'
            cdn.units = ''
            ct.long_name = 'Heat exchange coefficient'
            ct.units = ''
            ctn.long_name = 'Neutral Heat exchange coefficient'
            ctn.units = ''
            cq.long_name = 'Moisture exchange coefficient'
            cq.units = ''
            cqn.long_name = 'Neutral Moisture exchange coefficient'
            cqn.units = ''
            tsrv.long_name = 'star virtual temperature'
            tsrv.units = 'degrees Celsius'
            tsr.long_name = 'star temperature'
            tsr.units = 'degrees Celsius'
            qsr.long_name = 'star specific humidity'
            qsr.units = 'gr/kgr'
            usr.long_name = 'friction velocity'
            usr.units = 'm/s'
            psim.long_name = 'Momentum stability function'
            psit.long_name = 'Heat stability function'
            u10n.long_name = '10m neutral wind speed'
            u10n.units = 'm/s'
            t10n.long_name = '10m neutral temperature'
            t10n.units = 'degrees Celsius'
            tv10n.long_name = '10m neutral virtual temperature'
            tv10n.units = 'degrees Celsius'
            q10n.long_name = '10m neutral specific humidity'
444
            q10n.units = 'kgr/kgr'
445 446 447 448 449 450 451 452 453 454 455
            zo.long_name = 'momentum roughness length'
            zo.units = 'm'
            zot.long_name = 'temperature roughness length'
            zot.units = 'm'
            zoq.long_name = 'moisture roughness length'
            zoq.units = 'm'
            urefs.long_name = 'wind speed at ref height'
            urefs.units = 'm/s'
            trefs.long_name = 'temperature at ref height'
            trefs.units = 'degrees Celsius'
            qrefs.long_name = 'specific humidity at ref height'
456
            qrefs.units = 'kgr/kgr'
457
            qair.long_name = 'specific humidity of air'
458
            qair.units = 'kgr/kgr'
459
            qsea.long_name = 'specific humidity over water'
460
            qsea.units = 'kgr/kgr'
461
            itera.long_name = 'number of iterations'
462 463 464 465 466 467 468 469 470 471 472 473 474 475
            Rl.long_name = 'downward longwave radiation'
            Rl.units = 'W/m^2'
            Rs.long_name = 'downward shortwave radiation'
            Rs.units = 'W/m^2'
            Rnl.long_name = 'downward net longwave radiation'
            Rnl.units = 'W/m^2'
            ug.long_name = 'gust wind speed'
            ug.units = 'm/s'
            Rib.long_name = 'bulk Richardson number'
            rh.long_name = 'relative humidity'
            rh.units = '%'
            flag.long_name = ('flag "n" normal, "u": u10n < 0, "q": q10n < 0,'
                              '"l": zol<0.01, "m": missing, "i": points that'
                              'have not converged')
476 477 478 479 480
            fid.close()
            #%% delete variables
            del longitude, latitude, Date, tau, sensible, latent, monob, cd, cdn
            del ct, ctn, cq, cqn, tsrv, tsr, qsr, usr, psim, psit, psiq, u10n, t10n
            del tv10n, q10n, zo, zot, zoq, urefs, trefs, qrefs, itera, dter, dqer
481 482
            del qair, qsea, Rl, Rs, Rnl, ug, rh, Rib
            del t, date, p, sw, spd, hin, sst
483 484
    else:
        #%% save as .csv
485 486 487 488
        res.insert(loc=0, column='date', value=date)
        res.insert(loc=1, column='lon', value=lon)
        res.insert(loc=2, column='lat', value=lat)
        res.to_csv(outF)
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    return res, lon, lat
#%% run function
start_time = time.perf_counter()
#------------------------------------------------------------------------------
inF = input("Give input file name (data_all.csv or era5_r360x180.nc): \n")
meth = input("Give prefered method: \n")
while meth not in ["S80", "S88", "LP82", "YT96", "UA", "LY04", "C30", "C35",
                   "C40", "ecmwf","Beljaars"]:
    print("method unknown")
    meth = input("Give prefered method: \n")
else:
    meth = meth #[meth]
ext = meth+"_"
#------------------------------------------------------------------------------
gustIn = input("Give gustiness option (to use default press enter): \n")
if (gustIn == ''):
    gustIn = None
    ext = ext+'gust_'
else:
    gustIn = np.asarray(eval(gustIn), dtype=float)
    if ((np.all(gustIn) == 0)):
        ext = ext+'nogust_'
    else:
        ext = ext+'gust_'
#------------------------------------------------------------------------------
cskinIn = input("Give cool skin option (to use default press enter): \n")
if (cskinIn == ''):
    cskinIn = None
    if ((cskinIn == None) and (meth == "S80" or meth == "S88" or meth == "LP82"
                             or meth == "YT96" or meth == "UA" or
                             meth == "LY04")):
        cskinIn = 0
        ext = ext+'noskin_'
    elif ((cskinIn == None) and (meth == "C30" or meth == "C35" or meth == "C40"
                               or meth == "ecmwf" or meth == "Beljaars")):
        cskinIn = 1
        ext = ext+'skin_'
else:
    cskinIn = int(cskinIn)
    if (cskinIn == 0):
        ext = ext+'noskin_'
    elif (cskinIn == 1):
        ext = ext+'skin_'
#------------------------------------------------------------------------------
tolIn = input("Give tolerance option (to use default press enter): \n")
if (tolIn == ''):
    tolIn = ['flux', 1e-3, 0.1, 0.1]
else:
    tolIn = eval(tolIn)
ext = ext+'tol'+tolIn[0]
#------------------------------------------------------------------------------
outF = input("Give path and output file name: \n")
if ((outF == '') and (inF == "data_all.csv")):
    outF = "out_"+inF[:-4]+"_"+ext+".csv"
elif ((outF == '') and (inF == "era5_r360x180.nc")):
    outF = "out_"+inF[:-3]+"_"+ext+".nc"
elif ((outF[-4:] == '.csv') and (inF == 'era5_r360x180.nc')):
    outF = outF[:-4]+".nc"
elif ((outF[-3:] != '.nc') and (outF[-4:] != '.csv')):
    if (inF == "data_all.csv"):
        outF = outF+".csv"
    else:
        outF = outF+".nc"
else:
    outF = outF
#------------------------------------------------------------------------------
print("\n run_ASFC.py, started for method "+meth)

res, lon, lat = toy_ASFC(inF, outF, gustIn, cskinIn, tolIn, meth)
print("run_ASFC.py took ", np.round((time.perf_counter()-start_time)/60, 2),
      "minutes to run")

#%% generate flux plots
if (inF == 'era5_r360x180.nc'):
    cm = plt.cm.get_cmap('RdYlBu')
    ttl = ["tau (Nm$^{-2}$)", "shf (Wm$^{-2}$)", "lhf (Wm$^{-2}$)"]
    for i in range(3):
        plt.figure()
        plt.contourf(lon, lat,
                     np.nanmean(res[:, :, i], axis=0).reshape(len(lat),
                                                              len(lon)),
                     100, cmap=cm)
        plt.colorbar()
        plt.tight_layout()
        plt.xlabel("Longitude")
        plt.ylabel("Latitude")
        plt.title(meth+', '+ttl[i])
        plt.savefig('./'+ttl[i][:3]+'_'+ext+'.png', dpi=300, bbox_inches='tight')
elif (inF == "data_all.csv"):
    ttl = ["tau (Nm$^{-2}$)", "shf (Wm$^{-2}$)", "lhf (Wm$^{-2}$)"]
    for i in range(3):
        plt.figure()
581
        plt.plot(res[ttl[i][:3]],'.c', markersize=1)
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
        plt.title(meth)
        plt.xlabel("points")
        plt.ylabel(ttl[i])
        plt.savefig('./'+ttl[i][:3]+'_'+ext+'.png', dpi=300, bbox_inches='tight')

#%% generate txt file with statistic
if ((cskinIn == None) and (meth == "S80" or meth == "S88" or meth == "LP82"
                           or meth == "YT96" or meth == "UA" or
                           meth == "LY04")):
   cskinIn = 0
elif ((cskinIn == None) and (meth == "C30" or meth == "C35" or meth == "C40"
                             or meth == "ecmwf" or meth == "Beljaars")):
   cskinIn = 1
if (np.all(gustIn == None) and (meth == "C30" or meth == "C35" or meth == "C40")):
    gustIn = [1, 1.2, 600]
elif (np.all(gustIn == None) and (meth == "UA" or meth == "ecmwf")):
    gustIn = [1, 1, 1000]
elif np.all(gustIn == None):
    gustIn = [1, 1.2, 800]
elif ((np.size(gustIn) < 3) and (gustIn == 0)):
    gust = [0, 0, 0]
if (tolIn == None):
    tolIn = ['flux', 0.01, 1, 1]

print("Input summary", file=open('./stats.txt', 'a'))
print('input file name: {}, \n method: {}, \n gustiness: {}, \n cskin: {},'
      ' \n tolerance: {}'.format(inF, meth, gustIn, cskinIn, tolIn),
      file=open('./stats.txt', 'a'))
ttl = np.asarray(["tau  ", "shf  ", "lhf  ", "L    ", "cd   ", "cdn  ",
                  "ct   ", "ctn  ", "cq   ", "cqn  ", "tsrv ", "tsr  ",
                  "qsr  ", "usr  ", "psim ", "psit ", "psiq ", "u10n ",
                  "t10n ", "tv10n", "q10n ", "zo   ", "zot  ", "zoq  ",
                  "urefs", "trefs", "qrefs", "itera", "dter ", "dqer ",
615 616
                  "dtwl ", "qair ", "qsea ", "Rl   ", "Rs   ", "Rnl  ",
                  "ug   ", "Rib  ", "rh   "])
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
header = ["var", "mean", "median", "min", "max", "5%", "95%"]
n = np.shape(res)
stats = np.copy(ttl)
if (inF == 'era5_r360x180.nc'):
    stats = np.c_[stats, np.nanmean(res.reshape(n[0]*n[1], n[2]), axis=0)]
    stats = np.c_[stats, np.nanmedian(res.reshape(n[0]*n[1], n[2]), axis=0)]
    stats = np.c_[stats, np.nanmin(res.reshape(n[0]*n[1], n[2]), axis=0)]
    stats = np.c_[stats, np.nanmax(res.reshape(n[0]*n[1], n[2]), axis=0)]
    stats = np.c_[stats, np.nanpercentile(res.reshape(n[0]*n[1], n[2]), 5,
                                          axis=0)]
    stats = np.c_[stats, np.nanpercentile(res.reshape(n[0]*n[1], n[2]), 95,
                                          axis=0)]
    print(tabulate(stats, headers=header, tablefmt="github", numalign="left",
                   floatfmt=("s", "2.2e", "2.2e", "2.2e", "2.2e", "2.2e",
                               "2.2e")), file=open('./stats.txt', 'a'))
    print('-'*79+'\n', file=open('./stats.txt', 'a'))
elif (inF == "data_all.csv"):
634 635 636 637 638 639 640
    a = res.loc[:,"tau":"rh"].to_numpy(dtype="float64").T
    stats = np.c_[stats, np.nanmean(a, axis=1)]
    stats = np.c_[stats, np.nanmedian(a, axis=1)]
    stats = np.c_[stats, np.nanmin(a, axis=1)]
    stats = np.c_[stats, np.nanmax(a, axis=1)]
    stats = np.c_[stats, np.nanpercentile(a, 5, axis=1)]
    stats = np.c_[stats, np.nanpercentile(a, 95, axis=1)]
641 642 643 644
    print(tabulate(stats, headers=header, tablefmt="github", numalign="left",
                   floatfmt=("s", "2.2e", "2.2e", "2.2e", "2.2e", "2.2e",
                               "2.2e")), file=open('./stats.txt', 'a'))
    print('-'*79+'\n', file=open('./stats.txt', 'a'))
645
    del a
646 647 648 649 650 651

print('input file name: {}, \n method: {}, \n gustiness: {}, \n cskin: {},'
      ' \n tolerance: {}, \n output is written in: {}'.format(inF, meth,
                                                              gustIn, cskinIn,
                                                              tolIn, outF),
      file=open('./readme.txt', 'w'))