flux_subs.py 18.1 KB
Newer Older
sbiri's avatar
sbiri committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
import numpy as np
import math

""" Conversion factor for [:math:`^\\circ` C] to [:math:`^\\circ` K] """
CtoK = 273.16  # 273.15
""" von Karman's constant """
kappa = 0.4  # NOTE: 0.41

def charnock_C35(wind,u10n,usr,seastate,waveage,wcp,sigH,lat):
    g=gc(lat,None)
    a1, a2=0.0017, -0.0050    
    charnC=np.where(u10n>19,a1*19+a2,a1*u10n+a2)
    A, B=0.114, 0.622  #wave-age dependent coefficients
    Ad, Bd=0.091, 2.0  #Sea-state/wave-age dependent coefficients
    charnW=A*(usr/wcp)**B
    zoS=sigH*Ad*(usr/wcp)**Bd
    charnS=(zoS*g)/usr**2    
    charn=np.where(wind>10,0.011+(wind-10)/(18-10)*(0.018-0.011),np.where(wind>18,0.018,0.011*np.ones(np.shape(wind))))
    if waveage:
        if seastate:
            charn=charnS
        else:
            charn=charnW
    else:
        charn=charnC
    ac = np.zeros((len(wind),3))
    ac[:,0] = charn
    ac[:,1] = charnS
    ac[:,2] = charnW
    return ac
   
def cd_C35(u10n,wind,usr,charn,monob,Ta,hh_in,lat):
    g=gc(lat,None)
    zo=charn*usr**2/g+0.11*visc_air(Ta)/usr # surface roughness
    rr=zo*usr/visc_air(Ta)
    zoq=np.where(5.8e-5/rr**0.72>1.6e-4,1.6e-4,5.8e-5/rr**0.72) # These thermal roughness lengths give Stanton and
    zot=zoq                                                     # Dalton numbers that closely approximate COARE 3.0
    cdhf=kappa/(np.log(hh_in[0]/zo)-psiu_26(hh_in[0]/monob))    
    cthf=kappa/(np.log(hh_in[1]/zot)-psit_26(hh_in[1]/monob))
    cqhf=kappa/(np.log(hh_in[2]/zoq)-psit_26(hh_in[2]/monob))
    return zo,cdhf, cthf, cqhf
    
def cdn_calc(u10n,Ta,Tp,method="Smith80"):
    if (method == "Smith80"):
        cdn = np.where(u10n <=3,(0.61+0.567/u10n)*0.001,(0.61+0.063*u10n)*0.001)
    elif (method == "LP82"):
        cdn = np.where((u10n < 11) & (u10n>=4),1.2*0.001,np.where((u10n<=25) & (u10n>=11),(0.49+0.065*u10n)*0.001,1.14*0.001))            
    elif (method == "Smith88" or method == "COARE3.0" or method == "COARE4.0"):
        cdn = cdn_from_roughness(u10n,Ta,None, method)
    elif (method == "HEXOS"):
        cdn = (0.5+0.091*u10n)*0.001 #Smith et al. 1991 #(0.27 + 0.116*u10n)*0.001  Smith et al. 1992        
    elif (method == "HEXOSwave"):
        cdn=cdn_from_roughness(u10n,Ta,Tp, method)
    elif (method == "YT96"):  
        cdn = np.where((u10n<6) & (u10n>=3),(0.29 + 3.1/u10n + 7.7/u10n**2)*0.001,np.where((u10n<=26) & (u10n>=6),(0.60 + 0.070*u10n)*0.001,(0.61+0.567/u10n)*0.001)) # for u<3 same as Smith80
    elif (method == "LY04"):
        cdn = np.where(u10n>=0.5,(0.142 + (2.7/u10n) + (u10n/13.09))*0.001,np.nan)
    else:
        print("unknown method cdn: "+method)

    return cdn
 
#---------------------------------------------------------------------

def cdn_from_roughness(u10n,Ta,Tp,method="Smith88"):  
    g,tol = 9.812, 0.000001
    cdn,ustar = np.zeros(np.asarray(u10n).shape),np.zeros(np.asarray(u10n).shape)
    cdnn = (0.61 + 0.063 * u10n) * 0.001   
    zo,zc,zs=np.zeros(np.asarray(u10n).shape),np.zeros(np.asarray(u10n).shape),np.zeros(np.asarray(u10n).shape)
    for it in range(5):
        cdn = np.copy(cdnn)
        ustar = np.sqrt(cdn*u10n**2)
        if (method == "Smith88"):
            zc = 0.011*ustar**2/g #.....Charnock roughness length (equn 4 in Smith 88)
            zs = 0.11*visc_air(Ta)/ustar #.....smooth surface roughness length (equn 6 in Smith 88)
            zo = zc + zs #.....equns 7 & 8 in Smith 88 to calculate new CDN
        elif (method == "COARE3.0"):
            zc = 0.011 + (u10n-10)/(18-10)*(0.018-0.011)
            zc=np.where(u10n<10,0.011,np.where(u10n>18,0.018,zc))
            zs = 0.11 * visc_air(Ta)/ ustar
            zo = zc*ustar*ustar/g + zs
        elif (method == "HEXOSwave"):
            if (np.all(Tp==None) or np.nansum(Tp)==0):
                Tp = 0.729*u10n # Taylor and Yelland 2001            
            cp_wave = g*Tp/2/np.pi # use input wave period
            zo = 0.48*ustar**3/g/cp_wave # Smith et al. 1992
        else:
            print("unknown method for cdn_from_roughness "+method)    
        cdnn = (kappa/np.log(10/zo))**2
    cdn=np.where(np.abs(cdnn-cdn) < tol, cdnn,np.nan)
       
    return cdnn
#---------------------------------------------------------------------

def ctcqn_calc(zol, cdn, u10n, zo,Ta, method="Smith80"):
    l = np.shape(u10n)
    if (method == "Smith80" or method == "Smith88" or method == "YT96"):
        cqn = np.ones(l)*1.20*0.001 # from Smith88, no value given by S80 or YT80
        ctn = np.ones(l)*1.00*0.001
    elif (method == "LP82"):
        cqn = np.where((zol <= 0) & (u10n>4) & (u10n<14),1.15*0.001,np.nan)                     
        ctn = np.where((zol <= 0) & (u10n>4) & (u10n<25), 1.13*0.001, 0.66*0.001) 
    elif (method == "HEXOS" or method == "HEXOSwave"):
        cqn = np.where((u10n<=23) & (u10n>=3),1.1*0.001,np.nan)
        ctn = np.where((u10n<=18) & (u10n>=3),1.1*0.001,np.nan)
    elif (method == "COARE3.0" or method == "COARE4.0"):
        ustar = (cdn * u10n**2)**0.5
        rr = zo*ustar/visc_air(Ta)
        zoq = 5.5e-5/rr**0.6
        zoq[zoq>1.15e-4]  = 1.15e-4
        zot = zoq
        cqn = kappa**2/np.log(10/zo)/np.log(10/zoq)
        ctn = kappa**2/np.log(10/zo)/np.log(10/zot)
    elif (method == "LY04"):
        cqn = 34.6*0.001*cdn**0.5
        ctn = np.where(zol <= 0, 32.7*0.001*cdn**0.5, 18*0.001*cdn**0.5)
    else:
        print("unknown method ctcqn: "+method)
        
    return ctn, cqn
#---------------------------------------------------------------------
 
def cd_calc(cdn, height, ref_ht, psim):
    cd = cdn*np.power(1+np.sqrt(cdn)*np.power(kappa,-1)*(np.log(height/ref_ht)-psim),-2)
    return cd
#---------------------------------------------------------------------
 
def ctcq_calc(cdn, cd, ctn, cqn, h_t, h_q, ref_ht, psit, psiq):
    ct = ctn*(cd/cdn)**0.5/(1+ctn*((np.log(h_t/ref_ht)-psit)/(kappa*cdn**0.5)))
    cq = cqn*(cd/cdn)**0.5/(1+cqn*((np.log(h_q/ref_ht)-psiq)/(kappa*cdn**0.5)))
    return ct, cq
#---------------------------------------------------------------------
 
def psim_calc(zol, method="Smith80"): 
    coeffs = get_stabco(method)
    alpha, beta, gamma = coeffs[0], coeffs[1], coeffs[2]
    if (method == "COARE3.0" or method == "COARE4.0"):
        psim = np.where(zol<0,psim_conv_coare3(zol,alpha,beta,gamma),psim_stab_coare3(zol,alpha,beta,gamma))
    else:
        psim = np.where(zol<0,psim_conv(zol,alpha,beta,gamma),psim_stab(zol,alpha,beta,gamma))
    
    return psim
#---------------------------------------------------------------------
 
def psit_calc(zol, method="Smith80"):
    coeffs = get_stabco(method)
    alpha, beta, gamma = coeffs[0], coeffs[1], coeffs[2]
    if (method == "COARE3.0" or method == "COARE4.0"):
        psit = np.where(zol<0,psi_conv_coare3(zol,alpha,beta,gamma),psi_stab_coare3(zol,alpha,beta,gamma))
    else:
        psit = np.where(zol<0,psi_conv(zol,alpha,beta,gamma),psi_stab(zol,alpha,beta,gamma))
        
    return psit
#---------------------------------------------------------------------
def get_stabco(method="Smith80"):
    if (method == "Smith80" or method == "Smith88" or method == "LY04"):
        # Smith 1980, from Dyer (1974)
        alpha, beta, gamma = 16, 0.25, 5
    elif (method == "LP82"):
        alpha, beta, gamma = 16, 0.25, 7 
    elif (method == "HEXOS" or method == "HEXOSwave"):
        alpha, beta, gamma = 16, 0.25, 8
    elif (method == "YT96"):
        alpha, beta, gamma = 20, 0.25, 5
    elif (method == "COARE3.0" or method == "COARE4.0"):
        # use separate subroutine
        alpha, beta, gamma = 15, 1/3, 5   # not sure about gamma=34.15
        #alpha <- NA  #beta <- NA
    else:
        print("unknown method stabco: "+method)        
    coeffs = np.zeros(3)
    coeffs[0] = alpha
    coeffs[1] = beta
    coeffs[2] = gamma
          
    return coeffs
#---------------------------------------------------------------------
#======================================================================
def psi_conv_coare3(zol,alpha,beta,gamma):
    x = (1-alpha*zol)**0.5      # Kansas unstable
    psik = 2*np.log((1+x)/2.)
    y = (1-34.15*zol)**beta
    psic = 1.5*np.log((1+y+y*y)/3.)-(3)**0.5*np.arctan((1+2*y)/
                         (3)**0.5)+4*np.arctan(1)/(3)**0.5
    f = zol*zol/(1.+zol*zol)
    psit = (1-f)*psik+f*psic    
    return psit
#======================================================================
def psi_stab_coare3(zol,alpha,beta,gamma):          #Stable
    c = np.where(0.35*zol > 50, 50, 0.35*zol)       #Stable
    psit = -((1+2*zol/3)**1.5+0.6667*(zol-14.28)/np.exp(c)+8.525)    
    return psit
#======================================================================
def psi_conv(zol,alpha,beta,gamma):
    xtmp = (1 - alpha*zol)**beta
    psit = 2*np.log((1+xtmp**2)*0.5)    
    return psit
#======================================================================
def psi_stab(zol,alpha,beta,gamma):
    psit = -gamma*zol           
    return psit
#======================================================================
def psim_conv_coare3(zol,alpha,beta,gamma):
    x = (1-15*zol)**0.25        #Kansas unstable
    psik = 2*np.log((1+x)/2)+np.log((1+x*x)/2)-2*np.arctan(x)+2*np.arctan(1)
    y = (1-10.15*zol)**0.3333                   #Convective
    psic = 1.5*np.log((1+y+y*y)/3.)-np.sqrt(3)*np.arctan((1+2*y)/np.sqrt(3))+4.*np.arctan(1)/np.sqrt(3)
    f = zol*zol/(1+zol*zol)
    psim = (1-f)*psik+f*psic
    return psim
#======================================================================
def psim_stab_coare3(zol,alpha,beta,gamma):
    c = np.where(0.35*zol > 50, 50, 0.35*zol)       #Stable
    psim = -((1+1*zol)**1.0+0.6667*(zol-14.28)/np.exp(-c)+8.525)
    return psim
#======================================================================
def psim_conv(zol,alpha,beta,gamma):
    xtmp = (1 - alpha*zol)**beta
    psim = 2*np.log((1+xtmp)*0.5)+np.log((1+xtmp**2)*0.5)-2*np.arctan(xtmp)+np.pi/2                    
    return psim
#======================================================================
def psim_stab(zol,alpha,beta,gamma):
  psim = -gamma*zol
  return psim
#======================================================================
#---------------------------------------------------------------------
def get_skin(sst,qsea,rho,jcool,Rl,Rs,Rnl,cp,lv,usr,tsr,qsr,lat):
  # coded following Saunders (1967) with lambda = 6
  g=gc(lat,None)
  if ( np.nanmin(sst) > 200 ): # if Ta in Kelvin convert to Celsius
        sst = sst-273.16
  #************  cool skin constants  *******
  rhow, cpw, visw, tcw = 1022, 4000, 1e-6, 0.6  # density of water, specific heat capacity of water, water viscosity, thermal conductivity of water
  Al = 2.1e-5*(sst+3.2)**0.79
  be = 0.026
  bigc = 16*g*cpw*(rhow*visw)**3/(tcw*tcw*rho*rho)
  wetc = 0.622*lv*qsea/(287.1*(sst+273.16)**2)
  Rns = 0.945*Rs # albedo correction
  hsb=-rho*cp*usr*tsr
  hlb=-rho*lv*usr*qsr
  qout=Rnl+hsb+hlb
  tkt = 0.001*np.ones(np.shape(sst))
  dels=Rns*(0.065+11*tkt-6.6e-5/tkt*(1-np.exp(-tkt/8.0e-4)))
  qcol=qout-dels
  alq=Al*qcol+be*hlb*cpw/lv
  xlamx=np.where(alq>0,6/(1+(bigc*alq/usr**4)**0.75)**0.333,6)
  tkt=xlamx*visw/(np.sqrt(rho/rhow)*usr) #np.nanmin(0.01, xlamx*visw/(np.sqrt(rhoa/rhow)*usr))
  tkt=np.where(alq>0,np.where(tkt > 0.01, 0.01,tkt),tkt)
  dter=qcol*tkt/tcw
  dqer=wetc*dter
  return dter, dqer
#---------------------------------------------------------------------
def get_gust(Ta,usr,tsrv,zi,lat): 
   if (np.max(Ta)<200): # convert to K if in Celsius
       Ta=Ta+273.16         
   if np.isnan(zi):
      zi = 600  
   g=gc(lat,None)
   Bf=-g/Ta*usr*tsrv
   ug=np.ones(np.shape(Ta))*0.2
   ug=np.where(Bf>0,1.2*(Bf*zi)**0.333,0.2) 
   return ug
#---------------------------------------------------------------------
def get_heights(h):
    hh=np.zeros(3)
    if type(h) == float or type(h) == int:
       hh[0], hh[1], hh[2] = h, h, h
    elif len(h)==2:
       hh[0], hh[1], hh[2] = h[0], h[1], h[1]
    else:
       hh[0], hh[1], hh[2] = h[0], h[1], h[2]       
    return hh
#---------------------------------------------------------------------
def svp_calc(T):
# t is in Kelvin
# svp in mb, pure water
  if ( np.nanmin(T) < 200 ): # if T in Celsius convert to Kelvin
        T = T+273.16  
  svp = np.where(np.isnan(T), np.nan,2.1718e08*np.exp(-4157/(T-33.91-0.16)))
  return svp
#---------------------------------------------------------------------
 
def qsea_calc(sst,pres):
# sst in Kelvin
# pres in mb
# qsea in kg/kg
   if ( np.nanmin(sst) < 200 ): # if sst in Celsius convert to Kelvin
        sst = sst+273.16
        
   ed = svp_calc(sst)
   e = 0.98*ed 
   qsea = (0.622*e)/(pres-0.378*e)
   qsea = np.where(~np.isnan(sst+pres),qsea,np.nan)
   return qsea
#---------------------------------------------------------------------

def rh_calc(Ta,qair,pres):
  if ( np.nanmin(Ta) < 200 ): # if sst in Celsius convert to Kelvin
     Ta = Ta+273.16  
  e = np.where(np.isnan(Ta+qair+pres),np.nan,(qair*pres)/(0.62197+qair*0.378))
  ed = np.where(np.isnan(e),np.nan,svp_calc(Ta))
  rh = np.where(np.isnan(ed),np.nan,e/ed*100)
  return rh
#---------------------------------------------------------------------
 
def q_calc(Ta,rh,pres):
# rh in %
# air in K, if not it will be converted to K
# pres in mb
# qair in kg/kg
  if ( np.nanmin(Ta) < 200 ): # if sst in Celsius convert to Kelvin
     Ta = Ta+273.15
  
  e = np.where(np.isnan(Ta+rh+pres),np.nan,svp_calc(Ta)*rh*0.01)
  qair = np.where(np.isnan(e),np.nan,((0.62197*e)/(pres-0.378*e))) # Haltiner and Martin p.24
  return qair
#---------------------------------------------------------------------
def gc(lat,lon=None):
    """
    computes gravity relative to latitude
    inputs:
        lat : latitudes in deg
        lon : longitudes (optional)
    output:
        gc: gravity constant
    """
    gamma = 9.7803267715
    c1 = 0.0052790414
    c2 = 0.0000232718
    c3 = 0.0000001262
    c4 = 0.0000000007
    if lon is not None:
        lon_m,lat_m = np.meshgrid(lon,lat)
    else:
        lat_m = lat
    phi = lat_m*np.pi/180.
    xx = np.sin(phi)
    gc = gamma*(1+c1*np.power(xx,2)+c2*np.power(xx,4)+c3*np.power(xx,6)+c4*np.power(xx,8))    
    return gc
#---------------------------------------------------------------------
def PtoDepth(p,Lat):
    """
    computes depth in m from pressure in db following 
    Saunders and Fofonoff (1976). Deep sea res.
    """
    x=math.sin(math.radians(Lat))
    x=x*x
#    gravity variation with latitude (Anon, 1970)
    gr = 9.780318 * (1 + (5.2788E-3 + 2.36E-5 * x) * x) + 1.092E-6 * p
    d = (((-1.82E-15 * p + 2.279E-10) * p - 2.2512E-5) * p + 9.72659) * p;
    depth = d/gr
    
    return depth
#---------------------------------------------------------------------
def visc_air(Ta):
    """
    Computes the kinematic viscosity of dry air as a function of air temperature
    following Andreas (1989), CRREL Report 89-11.
    input:
        Ta : air temperature [Celsius]
    output
    visa : kinematic viscosity [m^2/s]
    """
    Ta = np.asarray(Ta)
    if ( np.nanmin(Ta) > 200 ): # if Ta in Kelvin convert to Celsius
        Ta = Ta-273.16
    visa = 1.326e-5 * (1 + 6.542e-3*Ta + 8.301e-6*Ta**2 - 4.84e-9*Ta**3)
    return visa

######
# functions from coare35vn.mat 
######
#------------------------------------------------------------------------------
def psit_26(zet):
    """
    computes temperature structure function
    """
    dzet= np.where(0.35*zet > 50, 50, 0.35*zet)  # stable
    psi=-((1+0.6667*zet)**1.5+0.6667*(zet-14.28)*np.exp(-dzet)+8.525)
    k=np.where(zet<0) # unstable
    x=(1-15*zet[k])**0.5
    psik=2*np.log((1+x)/2)
    x=(1-34.15*zet[k])**0.3333
    psic=1.5*np.log((1+x+x**2)/3)-np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3))+4*np.arctan(1)/np.sqrt(3)
    f=zet[k]**2/(1+zet[k]**2)
    psi[k]=(1-f)*psik+f*psic
    return psi
#------------------------------------------------------------------------------
def psiu_26(zet):
    """
    computes velocity structure function
    """
    dzet=np.where(0.35*zet > 50, 50, 0.35*zet) # stable
    a, b, c, d= 0.7, 3/4, 5, 0.35
    psi=-(a*zet+b*(zet-c/d)*np.exp(-dzet)+b*c/d)
    k=np.where(zet<0) # unstable
    x=(1-15*zet[k])**0.25
    psik=2*np.log((1+x)/2)+np.log((1+x**2)/2)-2*np.arctan(x)+2*np.arctan(1)
    x=(1-10.15*zet[k])**0.3333
    psic=1.5*np.log((1+x+x**2)/3)-np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3))+4*np.arctan(1)/np.sqrt(3)
    f=zet[k]**2/(1+zet[k]**2)
    psi[k]=(1-f)*psik+f*psic
    return psi
#------------------------------------------------------------------------------
def psiu_40(zet):
    """
    computes velocity structure function
    """
    dzet=np.where(0.35*zet > 50, 50, 0.35*zet) # stable
    a, b, c, d= 1, 3/4, 5, 0.35
    psi=-(a*zet+b*(zet-c/d)*np.exp(-dzet)+b*c/d)
    k=np.where(zet<0) # unstable
    x=(1-18*zet[k])**0.25
    psik=2*np.log((1+x)/2)+np.log((1+x**2)/2)-2*np.arctan(x)+2*np.arctan(1)
    x=(1-10*zet[k])**0.3333
    psic=1.5*np.log((1+x+x**2)/3)-np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3))+4*np.arctan(1)/np.sqrt(3)
    f=zet[k]**2/(1+zet[k]**2)
    psi[k]=(1-f)*psik+f*psic
    return psi
#------------------------------------------------------------------------------
def  bucksat(T,P):
    """
    computes saturation vapor pressure [mb]
    given T [degC] and P [mb]
    """
    T = np.asarray(T)
    if ( np.nanmin(T) > 200 ): # if Ta in Kelvin convert to Celsius
        T = T-CtoK
    exx=6.1121*np.exp(17.502*T/(T+240.97))*(1.0007+3.46e-6*P)
    return exx
#------------------------------------------------------------------------------
def qsat26sea(T,P):
    """
    computes surface saturation specific humidity [g/kg]
    given T [degC] and P [mb]
    """
    T = np.asarray(T)
    if ( np.nanmin(T) > 200 ): # if Ta in Kelvin convert to Celsius
        T = T-CtoK
    ex=bucksat(T,P)
    es=0.98*ex # reduction at sea surface
    qs=622*es/(P-0.378*es)
    return qs
#------------------------------------------------------------------------------
def qsat26air(T,P,rh):
    """
    computes saturation specific humidity [g/kg]
    given T [degC] and P [mb]
    """
    T = np.asarray(T)
    if ( np.nanmin(T) > 200 ): # if Ta in Kelvin convert to Celsius
        T = T-CtoK
    es=bucksat(T,P)
    em=0.01*rh*es
    q=622*em/(P-0.378*em)
    return q,em
#------------------------------------------------------------------------------
def RHcalc(T,P,Q):
    """
    computes relative humidity given T,P, & Q
    """
    es=6.1121*np.exp(17.502*T/(T+240.97))*(1.0007+3.46e-6*P)
    em=Q*P/(0.378*Q+0.622)
    RHrf=100*em/es
    return RHrf