AirSeaFluxCode.py 22.8 KB
Newer Older
sbiri's avatar
sbiri committed
1
import numpy as np
2
import pandas as pd
sbiri's avatar
sbiri committed
3
import logging
sbiri's avatar
sbiri committed
4
from get_init import get_init
5
from hum_subs import (get_hum, gamma_moist)
sbiri's avatar
sbiri committed
6
from util_subs import (kappa, CtoK, get_heights)
7 8
from flux_subs import (cs_C35, cs_Beljaars, cs_ecmwf, wl_ecmwf,
                       get_gust, get_L, get_strs, psim_calc,
sbiri's avatar
sbiri committed
9
                       psit_calc, cdn_calc, cd_calc, ctcq_calc, ctcqn_calc)
sbiri's avatar
sbiri committed
10 11


12 13 14 15 16 17 18

def AirSeaFluxCode(spd, T, SST, lat=None, hum=None, P=None, hin=18, hout=10,
                   Rl=None, Rs=None, cskin=None, skin="C35", wl=0, gust=None,
                   meth="S80", qmeth="Buck2", tol=None, n=10, out=0, L=None):
    """
    Calculates turbulent surface fluxes using different parameterizations
    Calculates height adjusted values for spd, T, q
sbiri's avatar
sbiri committed
19 20 21 22 23 24 25 26 27 28 29

    Parameters
    ----------
        spd : float
            relative wind speed in m/s (is assumed as magnitude difference
            between wind and surface current vectors)
        T : float
            air temperature in K (will convert if < 200)
        SST : float
            sea surface temperature in K (will convert if < 200)
        lat : float
30 31 32
            latitude (deg), default 45deg
        hum : float
            humidity input switch 2x1 [x, values] default is relative humidity
33 34 35
            x='rh' : relative humidity in %
            x='q' : specific humidity (g/kg)
            x='Td' : dew point temperature (K)
sbiri's avatar
sbiri committed
36
        P : float
37
            air pressure (hPa), default 1013hPa
sbiri's avatar
sbiri committed
38
        hin : float
39
            sensor heights in m (array 3x1 or 3xn), default 18m
sbiri's avatar
sbiri committed
40 41 42 43 44 45
        hout : float
            output height, default is 10m
        Rl : float
            downward longwave radiation (W/m^2)
        Rs : float
            downward shortwave radiation (W/m^2)
sbiri's avatar
sbiri committed
46
        cskin : int
47 48
            0 switch cool skin adjustment off, else 1
            default is 1
49 50 51 52
        skin : str
            cool skin method option "C35", "ecmwf" or "Beljaars"
        wl : int
            warm layer correction default is 0, to switch on set to 1
53
        gust : int
54 55
            3x1 [x, beta, zi] x=1 to include the effect of gustiness, else 0
            beta gustiness parameter, beta=1 for UA, beta=1.2 for COARE
56
            zi PBL height (m) 600 for COARE, 1000 for UA and ecmwf, 800 default
57
            default for COARE [1, 1.2, 600]
58
            default for UA, ecmwf [1, 1, 1000]
59 60
            default else [1, 1.2, 800]
        meth : str
61 62
            "S80", "S88", "LP82", "YT96", "UA", "LY04", "C30", "C35", "C40",
            "ecmwf", "Beljaars"
63 64
        qmeth : str
            is the saturation evaporation method to use amongst
65 66
            "HylandWexler","Hardy","Preining","Wexler","GoffGratch","WMO",
            "MagnusTetens","Buck","Buck2","WMO2018","Sonntag","Bolton",
67 68 69 70 71 72 73
            "IAPWS","MurphyKoop"]
            default is Buck2
        tol : float
           4x1 or 7x1 [option, lim1-3 or lim1-6]
           option : 'flux' to set tolerance limits for fluxes only lim1-3
           option : 'ref' to set tolerance limits for height adjustment lim-1-3
           option : 'all' to set tolerance limits for both fluxes and height
74
                    adjustment lim1-6 ['all', 0.01, 0.01, 1e-05, 1e-3, 0.1, 0.1]
75
           default is tol=['flux', 1e-3, 0.1, 0.1]
sbiri's avatar
sbiri committed
76
        n : int
77 78 79 80
            number of iterations (defautl = 10)
        out : int
            set 0 to set points that have not converged to missing (default)
            set 1 to keep points
81
        L : str
sbiri's avatar
sbiri committed
82
           Monin-Obukhov length definition options
83
           "S80"  : default for S80, S88, LP82, YT96 and LY04
84 85
           "ecmwf" : following ecmwf (IFS Documentation cy46r1), default for
           ecmwf
sbiri's avatar
sbiri committed
86 87 88
    Returns
    -------
        res : array that contains
89
                       1. momentum flux (N/m^2)
sbiri's avatar
sbiri committed
90 91
                       2. sensible heat (W/m^2)
                       3. latent heat (W/m^2)
92
                       4. Monin-Obhukov length (mb)
sbiri's avatar
sbiri committed
93 94 95 96 97 98 99 100 101 102 103
                       5. drag coefficient (cd)
                       6. neutral drag coefficient (cdn)
                       7. heat exhange coefficient (ct)
                       8. neutral heat exhange coefficient (ctn)
                       9. moisture exhange coefficient (cq)
                       10. neutral moisture exhange coefficient (cqn)
                       11. star virtual temperature (tsrv)
                       12. star temperature (tsr)
                       13. star humidity (qsr)
                       14. star velocity (usr)
                       15. momentum stability function (psim)
104 105 106 107 108 109 110 111 112
                       16. heat stability function (psit)
                       17. moisture stability function (psiq)
                       18. 10m neutral velocity (u10n)
                       19. 10m neutral temperature (t10n)
                       20. 10m neutral virtual temperature (tv10n)
                       21. 10m neutral specific humidity (q10n)
                       22. surface roughness length (zo)
                       23. heat roughness length (zot)
                       24. moisture roughness length (zoq)
113 114 115
                       25. velocity at reference height (uref)
                       26. temperature at reference height (tref)
                       27. specific humidity at reference height (qref)
116
                       28. number of iterations until convergence
117 118
                       29. cool-skin temperature depression (dter)
                       30. cool-skin humidity depression (dqer)
119 120 121 122 123 124
                       31. warm layer correction (dtwl)
                       32. specific humidity of air (qair)
                       33. specific humidity at sea surface (qsea)
                       34. downward longwave radiation (Rl)
                       35. downward shortwave radiation (Rs)
                       36. downward net longwave radiation (Rnl)
125 126 127 128
                       37. flag ("n": normal, "ul": spd<2m/s,
                                 "u": u10n<0, "q":q10n<0
                                 "t": DT>10, "l": z/L<0.01,
                                 "i": convergence fail at n)
129

130
    2021 / Author S. Biri
sbiri's avatar
sbiri committed
131 132 133
    """
    logging.basicConfig(filename='flux_calc.log',
                        format='%(asctime)s %(message)s',level=logging.INFO)
134 135
    logging.captureWarnings(True)
    #  check input values and set defaults where appropriate
136 137 138 139
    lat, P, Rl, Rs, cskin, skin, wl, gust, tol, L = get_init(spd, T, SST, lat,
                                                              P, Rl, Rs, cskin,
                                                              skin, wl, gust, L,
                                                              tol, meth, qmeth)
140 141
    flag = np.ones(spd.shape, dtype="object")*"n"
    flag = np.where(spd < 2, "ul", flag)
142
    ref_ht = 10        # reference height
143 144
    h_in = get_heights(hin, len(spd))  # heights of input measurements/fields
    h_out = get_heights(hout, 1)       # desired height of output variables
145
    logging.info('method %s, inputs: lat: %s | P: %s | Rl: %s |'
146
                 ' Rs: %s | gust: %s | cskin: %s | L : %s', meth,
147
                 np.nanmedian(lat), np.nanmedian(P), np.nanmedian(Rl),
148
                 np.nanmedian(Rs), gust, cskin, L)
149
    #  set up/calculate temperatures and specific humidities
150
    th = np.where(T < 200, (np.copy(T)+CtoK) *
sbiri's avatar
sbiri committed
151 152
                  np.power(1000/P,287.1/1004.67),
                  np.copy(T)*np.power(1000/P,287.1/1004.67))  # potential T
153
    sst = np.where(SST < 200, np.copy(SST)+CtoK, np.copy(SST))
154
    qair, qsea = get_hum(hum, T, sst, P, qmeth)
155 156 157 158
    #lapse rate
    tlapse = gamma_moist(SST, T, qair/1000)
    Ta = np.where(T < 200, np.copy(T)+CtoK+tlapse*h_in[1],
                  np.copy(T)+tlapse*h_in[1])  # convert to Kelvin if needed
159 160
    logging.info('method %s and q method %s | qsea:%s, qair:%s', meth, qmeth,
                  np.nanmedian(qsea), np.nanmedian(qair))
sbiri's avatar
sbiri committed
161 162
    if (np.all(np.isnan(qsea)) or np.all(np.isnan(qair))):
        print("qsea and qair cannot be nan")
163

sbiri's avatar
sbiri committed
164 165
    dt = Ta - sst
    dq = qair - qsea
166 167 168
    flag = np.where((dt > 10) & (flag == "n"), "t",
                    np.where((dt > 10) & (flag != "n"), flag+[","]+["t"],
                             flag))
169
    #  first guesses
sbiri's avatar
sbiri committed
170
    t10n, q10n = np.copy(Ta), np.copy(qair)
171
    tv10n = t10n*(1+0.61*q10n)
sbiri's avatar
sbiri committed
172 173 174 175
    #  Zeng et al. 1998
    tv=th*(1.+0.61*qair)   # virtual potential T
    dtv=dt*(1.+0.61*qair)+0.61*th*dq
    # ------------
176
    rho = P*100/(287.1*tv10n)
177
    lv = (2.501-0.00237*(sst-CtoK))*1e6
sbiri's avatar
sbiri committed
178 179 180
    cp = 1004.67*(1 + 0.00084*qsea)
    u10n = np.copy(spd)
    cdn = cdn_calc(u10n, Ta, None, lat, meth)
181 182 183 184 185 186 187
    ctn, ct, cqn, cq = (np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan,
                        np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan)
    psim, psit, psiq = (np.zeros(spd.shape), np.zeros(spd.shape),
                        np.zeros(spd.shape))
    cd = cd_calc(cdn, h_in[0], ref_ht, psim)
    tsr, tsrv = np.zeros(spd.shape), np.zeros(spd.shape)
    qsr = np.zeros(spd.shape)
sbiri's avatar
sbiri committed
188
    # cskin parameters
189
    tkt = 0.001*np.ones(T.shape)
sbiri's avatar
sbiri committed
190
    dter = np.ones(T.shape)*0.3
191
    dqer = dter*0.622*lv*qsea/(287.1*np.power(sst, 2))
192 193 194 195
    Rnl = 0.97*(5.67e-8*np.power(sst-0.3*cskin, 4)-Rl)
    Qs = 0.945*Rs
    dtwl = np.ones(T.shape)*0.3
    skt = np.copy(sst)
196
    # gustiness adjustment
197
    if (gust[0] == 1 and meth == "UA"):
198 199
        wind = np.where(dtv >= 0, np.where(spd > 0.1, spd, 0.1),
                        np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2)))
200
    elif (gust[0] == 1):
201
        wind = np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2))
202
    elif (gust[0] == 0):
203
        wind = np.copy(spd)
204
    # stars and roughness lengths
205 206 207 208
    usr = np.sqrt(cd*np.power(wind, 2))
    zo = 0.0001*np.ones(spd.shape)
    zot, zoq = 0.0001*np.ones(spd.shape), 0.0001*np.ones(spd.shape)
    monob = -100*np.ones(spd.shape)  # Monin-Obukhov length
209 210
    tsr = (dt+dter*cskin-dtwl*wl)*kappa/(np.log(h_in[1]/zot) -
                                         psit_calc(h_in[1]/monob, meth))
sbiri's avatar
sbiri committed
211
    qsr = (dq+dqer*cskin)*kappa/(np.log(h_in[2]/zoq) -
212
                                 psit_calc(h_in[2]/monob, meth))
213
    # set-up to feed into iteration loop
214 215
    it, ind = 0, np.where(spd > 0)
    ii, itera = True, np.zeros(spd.shape)*np.nan
216 217 218
    tau = 0.05*np.ones(spd.shape)
    sensible = 5*np.ones(spd.shape)
    latent = 65*np.ones(spd.shape)
219
    #  iteration loop
sbiri's avatar
sbiri committed
220 221 222 223
    while np.any(ii):
        it += 1
        if it > n:
            break
224 225 226 227 228 229 230
        if (tol[0] == 'flux'):
            old = np.array([np.copy(tau), np.copy(sensible), np.copy(latent)])
        elif (tol[0] == 'ref'):
            old = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n)])
        elif (tol[0] == 'all'):
            old = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n),
                            np.copy(tau), np.copy(sensible), np.copy(latent)])
sbiri's avatar
sbiri committed
231 232
        cdn[ind] = cdn_calc(u10n[ind], Ta[ind], None, lat[ind], meth)
        if (np.all(np.isnan(cdn))):
233
            break
sbiri's avatar
sbiri committed
234 235
            logging.info('break %s at iteration %s cdn<0', meth, it)
        zo[ind] = ref_ht/np.exp(kappa/np.sqrt(cdn[ind]))
236 237 238
        psim[ind] = psim_calc(h_in[0, ind]/monob[ind], meth)
        cd[ind] = cd_calc(cdn[ind], h_in[0, ind], ref_ht, psim[ind])
        ctn[ind], cqn[ind] = ctcqn_calc(h_in[1, ind]/monob[ind], cdn[ind],
sbiri's avatar
sbiri committed
239
                                        u10n[ind], zo[ind], Ta[ind], meth)
240 241 242 243
        zot[ind] = ref_ht/(np.exp(np.power(kappa, 2) /
                           (ctn[ind]*np.log(ref_ht/zo[ind]))))
        zoq[ind] = ref_ht/(np.exp(np.power(kappa, 2) /
                           (cqn[ind]*np.log(ref_ht/zo[ind]))))
244 245
        psit[ind] = psit_calc(h_in[1, ind]/monob[ind], meth)
        psiq[ind] = psit_calc(h_in[2, ind]/monob[ind], meth)
sbiri's avatar
sbiri committed
246
        ct[ind], cq[ind] = ctcq_calc(cdn[ind], cd[ind], ctn[ind], cqn[ind],
247 248
                                      h_in[1, ind], h_in[2, ind], ref_ht,
                                      psit[ind], psiq[ind])
sbiri's avatar
sbiri committed
249 250 251
        usr[ind], tsr[ind], qsr[ind] = get_strs(h_in[:, ind], monob[ind],
                                                wind[ind], zo[ind], zot[ind],
                                                zoq[ind], dt[ind], dq[ind],
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
                                                dter[ind], dqer[ind], dtwl[ind],
                                                ct[ind], cq[ind], cskin, wl,
                                                meth)
        if ((cskin == 1) and (wl == 0)):
            if (skin == "C35"):
                dter[ind], dqer[ind], tkt[ind] = cs_C35(sst[ind], qsea[ind],
                                                        rho[ind], Rs[ind],
                                                        Rnl[ind],
                                                        cp[ind], lv[ind],
                                                        np.copy(tkt[ind]),
                                                        usr[ind], tsr[ind],
                                                        qsr[ind], lat[ind])
            elif (skin == "ecmwf"):
                dter[ind] = cs_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     sst[ind], lat[ind])
                dqer[ind] = (dter[ind]*0.622*lv[ind]*qsea[ind] /
                             (287.1*np.power(sst[ind], 2)))
            elif (skin == "Beljaars"):
                Qs[ind], dter[ind] = cs_Beljaars(rho[ind], Rs[ind], Rnl[ind],
                                                 cp[ind], lv[ind], usr[ind],
                                                 tsr[ind], qsr[ind], lat[ind],
                                                 np.copy(Qs[ind]))
                dqer = dter*0.622*lv*qsea/(287.1*np.power(sst, 2))
        elif ((cskin == 1) and (wl == 1)):
            if (skin == "C35"):
                dter[ind], dqer[ind], tkt[ind] = cs_C35(sst[ind], qsea[ind],
                                                        rho[ind], Rs[ind],
                                                        Rnl[ind],
                                                        cp[ind], lv[ind],
                                                        np.copy(tkt[ind]),
                                                        usr[ind], tsr[ind],
                                                        qsr[ind], lat[ind])
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
            elif (skin == "ecmwf"):
                dter[ind] = cs_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     sst[ind], lat[ind])
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
                dqer[ind] = (dter[ind]*0.622*lv[ind]*qsea[ind] /
                             (287.1*np.power(skt[ind], 2)))
            elif (skin == "Beljaars"):
                Qs[ind], dter[ind] = cs_Beljaars(rho[ind], Rs[ind], Rnl[ind],
                                                 cp[ind], lv[ind], usr[ind],
                                                 tsr[ind], qsr[ind], lat[ind],
                                                 np.copy(Qs[ind]))
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
                dqer = dter*0.622*lv*qsea/(287.1*np.power(skt, 2))
312 313 314
        else:
           dter[ind] = np.zeros(sst[ind].shape)
           dqer[ind] = np.zeros(sst[ind].shape)
315
           tkt[ind] = 0.001*np.ones(T[ind].shape)
sbiri's avatar
sbiri committed
316 317 318 319 320 321
        logging.info('method %s | dter = %s | dqer = %s | tkt = %s | Rnl = %s '
                     '| usr = %s | tsr = %s | qsr = %s', meth,
                     np.nanmedian(dter), np.nanmedian(dqer),
                     np.nanmedian(tkt), np.nanmedian(Rnl),
                     np.nanmedian(usr), np.nanmedian(tsr),
                     np.nanmedian(qsr))
322 323
        Rnl[ind] = 0.97*(5.67e-8*np.power(sst[ind] -
                          dter[ind]*cskin, 4)-Rl[ind])
324 325 326 327
        t10n[ind] = (Ta[ind] -
                     tsr[ind]/kappa*(np.log(h_in[1, ind]/ref_ht)-psit[ind]))
        q10n[ind] = (qair[ind] -
                     qsr[ind]/kappa*(np.log(h_in[2, ind]/ref_ht)-psiq[ind]))
sbiri's avatar
sbiri committed
328
        tv10n[ind] = t10n[ind]*(1+0.61*q10n[ind])
329
        tsrv[ind], monob[ind] = get_L(L, lat[ind], usr[ind], tsr[ind],
330 331 332 333
                                      qsr[ind], t10n[ind], h_in[:, ind],
                                      Ta[ind], sst[ind],
                                      qair[ind], qsea[ind], q10n[ind],
                                      wind[ind], np.copy(monob[ind]), meth)
334 335 336
        psim[ind] = psim_calc(h_in[0, ind]/monob[ind], meth)
        psit[ind] = psit_calc(h_in[1, ind]/monob[ind], meth)
        psiq[ind] = psit_calc(h_in[2, ind]/monob[ind], meth)
337
        if (gust[0] == 1 and meth == "UA"):
sbiri's avatar
sbiri committed
338
            wind[ind] = np.where(dtv[ind] >= 0, np.where(spd[ind] > 0.1,
339 340 341 342 343 344 345
                                  spd[ind], 0.1),
                                  np.sqrt(np.power(np.copy(spd[ind]), 2) +
                                  np.power(get_gust(gust[1], tv[ind], usr[ind],
                                  tsrv[ind], gust[2], lat[ind]), 2)))
                                  # Zeng et al. 1998 (20)
        elif (gust[0] == 1 and (meth == "C30" or meth == "C35" or
                                meth == "C40")):
sbiri's avatar
sbiri committed
346
            wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) +
347 348 349
                                np.power(get_gust(gust[1], Ta[ind], usr[ind],
                                tsrv[ind], gust[2], lat[ind]), 2))
        elif (gust[0] == 1):
350
            wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) +
351 352 353
                                np.power(get_gust(gust[1], Ta[ind], usr[ind],
                                tsrv[ind], gust[2], lat[ind]), 2))
        elif (gust[0] == 0):
354
            wind[ind] = np.copy(spd[ind])
355 356
        u10n[ind] = wind[ind]-usr[ind]/kappa*(np.log(h_in[0, ind]/10) -
                                              psim[ind])
357 358 359
        flag = np.where((u10n < 0) & (flag == "n"), "u",
                        np.where((u10n < 0) & (flag != "n"), flag+[","]+["u"],
                                 flag))
sbiri's avatar
sbiri committed
360
        u10n = np.where(u10n < 0, np.nan, u10n)
sbiri's avatar
sbiri committed
361
        itera[ind] = np.ones(1)*it
362 363 364 365 366 367 368 369 370 371 372 373 374
        sensible = -rho*cp*usr*tsr
        latent = -rho*lv*usr*qsr
        if (gust[0] == 1):
            tau = rho*np.power(usr, 2)*(spd/wind)
        elif (gust[0] == 0):
            tau = rho*np.power(usr, 2)
        if (tol[0] == 'flux'):
            new = np.array([np.copy(tau), np.copy(sensible), np.copy(latent)])
        elif (tol[0] == 'ref'):
            new = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n)])
        elif (tol[0] == 'all'):
            new = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n),
                            np.copy(tau), np.copy(sensible), np.copy(latent)])
375
        d = np.abs(new-old)
376 377
        if (tol[0] == 'flux'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
378
                            (d[2, :] > tol[3]))
379 380
        elif (tol[0] == 'ref'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
381
                            (d[2, :] > tol[3]))
382 383
        elif (tol[0] == 'all'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
384 385
                            (d[2, :] > tol[3])+(d[3, :] > tol[4]) +
                            (d[4, :] > tol[5])+(d[5, :] > tol[6]))
386 387
        if (ind[0].size == 0):
            ii = False
sbiri's avatar
sbiri committed
388
        else:
389
            ii = True
390
    itera[ind] = -1
391
    # itera = np.where(itera > n, -1, itera)
392
    logging.info('method %s | # of iterations:%s', meth, it)
sbiri's avatar
sbiri committed
393
    logging.info('method %s | # of points that did not converge :%s', meth,
394
                  ind[0].size)
sbiri's avatar
sbiri committed
395
    # calculate output parameters
396
    rho = (0.34838*P)/(tv10n)
sbiri's avatar
sbiri committed
397
    t10n = t10n-(273.16+tlapse*ref_ht)
398 399 400
    zo = ref_ht/np.exp(kappa/cdn**0.5)
    zot = ref_ht/(np.exp(kappa**2/(ctn*np.log(ref_ht/zo))))
    zoq = ref_ht/(np.exp(kappa**2/(cqn*np.log(ref_ht/zo))))
401 402 403 404 405 406 407
    uref = (spd-usr/kappa*(np.log(h_in[0]/h_out[0])-psim +
            psim_calc(h_out[0]/monob, meth)))
    tref = (Ta-tsr/kappa*(np.log(h_in[1]/h_out[1])-psit +
            psit_calc(h_out[0]/monob, meth)))
    tref = tref-(273.16+tlapse*h_out[1])
    qref = (qair-qsr/kappa*(np.log(h_in[2]/h_out[2]) -
            psit+psit_calc(h_out[2]/monob, meth)))
408 409 410 411 412 413 414 415 416
    flag = np.where((q10n < 0) & (flag == "n"), "q",
                    np.where((q10n < 0) & (flag != "n"), flag+[","]+["q"],
                             flag))
    flag = np.where((np.abs(hin[0]/monob) < 0.01) & (flag == "n"), "l",
                    np.where((np.abs(hin[0]/monob) < 0.01) & (flag != "n"),
                             flag+[","]+["l"], flag))
    flag = np.where((itera == -1) & (flag == "n"), "i",
                    np.where((itera == -1) & (flag != "n"), flag+[","]+["i"],
                             flag))
417
    res = np.zeros((36, len(spd)))
sbiri's avatar
sbiri committed
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
    res[0][:] = tau
    res[1][:] = sensible
    res[2][:] = latent
    res[3][:] = monob
    res[4][:] = cd
    res[5][:] = cdn
    res[6][:] = ct
    res[7][:] = ctn
    res[8][:] = cq
    res[9][:] = cqn
    res[10][:] = tsrv
    res[11][:] = tsr
    res[12][:] = qsr
    res[13][:] = usr
    res[14][:] = psim
    res[15][:] = psit
434 435 436 437 438 439 440 441
    res[16][:] = psiq
    res[17][:] = u10n
    res[18][:] = t10n
    res[19][:] = tv10n
    res[20][:] = q10n
    res[21][:] = zo
    res[22][:] = zot
    res[23][:] = zoq
442 443 444
    res[24][:] = uref
    res[25][:] = tref
    res[26][:] = qref
445
    res[27][:] = itera
446 447
    res[28][:] = dter
    res[29][:] = dqer
448 449 450 451 452 453
    res[30][:] = dtwl
    res[31][:] = qair
    res[32][:] = qsea
    res[33][:] = Rl
    res[34][:] = Rs
    res[35][:] = Rnl
454

455 456 457
    if (out == 0):
        res[:, ind] = np.nan
    # set missing values where data have non acceptable values
458 459 460 461 462 463 464 465 466 467 468 469 470 471
    res = [np.where(spd < 0, np.nan, res[i][:]) for i in range(36)]
    res = [np.where(q10n < 0, np.nan, res[i][:]) for i in range(36)]
    res = np.asarray(res)
    # output with pandas
    resAll = pd.DataFrame(data=res.T, index=range(len(spd)),
                        columns=["tau", "shf", "lhf", "L", "cd", "cdn", "ct",
                                "ctn", "cq", "cqn", "tsrv", "tsr", "qsr",
                                "usr", "psim", "psit","psiq", "u10n", "t10n",
                                "tv10n", "q10n", "zo", "zot", "zoq", "uref",
                                "tref", "qref", "iteration", "dter", "dqer",
                                "dtwl", "qair", "qsea", "Rl", "Rs", "Rnl"])
    resAll["flag"] = flag
    return resAll