octtree.py 24.8 KB
Newer Older
1
from dataclasses import dataclass
2
import datetime
3
from .distance_metrics import haversine, destination
4
from .utils import LatitudeError
5
from math import degrees, sqrt
Joseph Siddons's avatar
Joseph Siddons committed
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28


class SpaceTimeRecord:
    """
    ICOADS Record class.

    This is a simple instance of an ICOARDS record, it requires position and
    temporal data. It can optionally include a UID and extra data.

    The temporal component was designed to use `datetime` values, however all
    methods will work with numeric datetime information - for example a pentad,
    timestamp, julian day, etc. Note that any uses within an OctTree and
    SpaceTimeRectangle must also have timedelta values replaced with numeric
    ranges in this case.

    Equality is checked only on the required fields + UID if it is specified.

    Parameters
    ----------
    lon : float
        Horizontal coordinate (longitude).
    lat : float
        Vertical coordinate (latitude).
29
    datetime : datetime.datetime
Joseph Siddons's avatar
Joseph Siddons committed
30 31 32 33 34
        Datetime of the record. Can also be a numeric value such as pentad.
        Comparisons between Records with datetime and Records with numeric
        datetime will fail.
    uid : str | None
        Unique Identifier.
35 36
    fix_lon : bool
        Force longitude to -180, 180
Joseph Siddons's avatar
Joseph Siddons committed
37 38 39 40 41 42 43 44 45
    **data
        Additional data passed to the SpaceTimeRecord for use by other functions
        or classes.
    """

    def __init__(
        self,
        lon: float,
        lat: float,
46
        datetime: datetime.datetime,
Joseph Siddons's avatar
Joseph Siddons committed
47
        uid: str | None = None,
48
        fix_lon: bool = True,
Joseph Siddons's avatar
Joseph Siddons committed
49 50 51
        **data,
    ) -> None:
        self.lon = lon
52 53 54 55 56 57 58
        if fix_lon:
            # Move lon to -180, 180
            self.lon = ((self.lon + 540) % 360) - 180
        if lat < -90 or lat > 90:
            raise LatitudeError(
                "Expected latitude value to be between -90 and 90 degrees"
            )
Joseph Siddons's avatar
Joseph Siddons committed
59 60 61 62 63 64 65 66
        self.lat = lat
        self.datetime = datetime
        self.uid = uid
        for var, val in data.items():
            setattr(self, var, val)
        return None

    def __str__(self) -> str:
67
        return f"SpaceTimeRecord(x = {self.lon}, y = {self.lat}, datetime = {self.datetime}, uid = {self.uid})"
Joseph Siddons's avatar
Joseph Siddons committed
68 69

    def __eq__(self, other: object) -> bool:
70 71 72 73
        if not isinstance(other, SpaceTimeRecord):
            return False
        if self.uid and other.uid:
            return self.uid == other.uid
Joseph Siddons's avatar
Joseph Siddons committed
74
        return (
75
            self.lon == other.lon
Joseph Siddons's avatar
Joseph Siddons committed
76 77 78 79 80 81 82 83 84 85
            and self.lat == other.lat
            and self.datetime == other.datetime
            and (not (self.uid or other.uid) or self.uid == other.uid)
        )


class SpaceTimeRecords(list[SpaceTimeRecord]):
    """List of SpaceTimeRecords"""


86
@dataclass
Joseph Siddons's avatar
Joseph Siddons committed
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
class SpaceTimeRectangle:
    """
    A simple Space Time SpaceTimeRectangle class.

    This constructs a simple Rectangle object.
    The defining coordinates are the centres of the box, and the extents
    are the full width, height, and time extent.

    Whilst the rectangle is assumed to lie on the surface of Earth, this is
    a projection as the rectangle is defined by a longitude/latitude range.

    The temporal components are defined in the same way as the spatial
    components, that is that the `datetime` component (t) is the "centre", and
    the time extent (dt) is the full time range of the box.

    Parameters
    ----------
    lon : float
        Horizontal centre of the rectangle (longitude).
    lat : float
        Vertical centre of the rectangle (latitude).
108
    datetime : datetime.datetime
Joseph Siddons's avatar
Joseph Siddons committed
109 110 111 112 113
        Datetime centre of the rectangle.
    w : float
        Width of the rectangle (longitude range).
    h : float
        Height of the rectangle (latitude range).
114
    dt : datetime.timedelta
115
        time extent of the rectangle.
Joseph Siddons's avatar
Joseph Siddons committed
116 117
    """

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    lon: float
    lat: float
    date: datetime.datetime
    lon_range: float
    lat_range: float
    dt: datetime.timedelta

    def __post_init__(self):
        if self.lon > 180:
            self.lon -= 360
        if self.lat > 90 or self.lat < -90:
            raise LatitudeError(
                f"Central latitude value out of range {self.lat}, "
                + "should be between -90, 90 degrees"
            )
Joseph Siddons's avatar
Joseph Siddons committed
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    @property
    def west(self) -> float:
        """Western boundary of the Rectangle"""
        return (((self.lon - self.lon_range / 2) + 540) % 360) - 180

    @property
    def east(self) -> float:
        """Eastern boundary of the Rectangle"""
        return (((self.lon + self.lon_range / 2) + 540) % 360) - 180

    @property
    def north(self) -> float:
        """Northern boundary of the Rectangle"""
        north = self.lat + self.lat_range / 2
        if north > 90:
            raise LatitudeError(
                "Rectangle crosses north pole - Use two Rectangles"
            )
        return north
Joseph Siddons's avatar
Joseph Siddons committed
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    @property
    def south(self) -> float:
        """Southern boundary of the Rectangle"""
        south = self.lat - self.lat_range / 2
        if south < -90:
            raise LatitudeError(
                "Rectangle crosses south pole - Use two Rectangles"
            )
        return south

    @property
    def start(self) -> datetime.datetime:
        """Start date of the Rectangle"""
        return self.date - self.dt / 2

    @property
    def end(self) -> datetime.datetime:
        """End date of the Rectangle"""
        return self.date + self.dt / 2

    @property
    def edge_dist(self) -> float:
        """Approximate maximum distance from the centre to an edge"""
        corner_dist = max(
            haversine(self.lon, self.lat, self.east, self.north),
            haversine(self.lon, self.lat, self.east, self.south),
Joseph Siddons's avatar
Joseph Siddons committed
180
        )
181
        if self.north * self.south < 0:
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
            corner_dist = max(
                corner_dist,
                haversine(self.lon, self.lat, self.east, 0),
            )
        return corner_dist

    def _test_east_west(self, lon: float) -> bool:
        if self.lon_range >= 360:
            # Rectangle encircles earth
            return True
        if self.east > self.lon and self.west < self.lon:
            return lon <= self.east and lon >= self.west
        if self.east < self.lon:
            return not (lon > self.east and lon < self.west)
        if self.west > self.lon:
            return not (lon < self.east and lon > self.west)
        return False

    def _test_north_south(self, lat: float) -> bool:
        return lat <= self.north and lat >= self.south
Joseph Siddons's avatar
Joseph Siddons committed
202 203 204

    def contains(self, point: SpaceTimeRecord) -> bool:
        """Test if a point is contained within the SpaceTimeRectangle"""
205 206 207 208
        if point.datetime > self.end or point.datetime < self.start:
            return False
        return self._test_north_south(point.lat) and self._test_east_west(
            point.lon
Joseph Siddons's avatar
Joseph Siddons committed
209 210 211 212
        )

    def intersects(self, other: object) -> bool:
        """Test if another Rectangle object intersects this Rectangle"""
213 214 215 216 217 218 219 220 221 222 223 224 225 226
        if not isinstance(other, SpaceTimeRectangle):
            raise TypeError(
                f"other must be a Rectangle class, got {type(other)}"
            )
        if other.end < self.start or other.start > self.end:
            # Not in the same time range
            return False
        if other.south > self.north:
            # Other is fully north of self
            return False
        if other.north < self.south:
            # Other is fully south of self
            return False
        # Handle east / west edges
227 228 229 230 231 232 233 234
        return (
            self._test_east_west(other.west)
            or self._test_east_west(other.east)
            # Fully contained within other
            or (
                other._test_east_west(self.west)
                and other._test_east_west(self.east)
            )
Joseph Siddons's avatar
Joseph Siddons committed
235 236 237 238 239 240
        )

    def nearby(
        self,
        point: SpaceTimeRecord,
        dist: float,
241
        t_dist: datetime.timedelta,
Joseph Siddons's avatar
Joseph Siddons committed
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    ) -> bool:
        """
        Check if point is nearby the Rectangle

        Determines if a SpaceTimeRecord that falls on the surface of Earth is
        nearby to the rectangle in space and time. This calculation uses the
        Haversine distance metric.

        Distance from rectangle to point is challenging on the surface of a
        sphere, this calculation will return false positives as a check based
        on the distance from the centre of the rectangle to the corners, or
        to its Eastern edge (if the rectangle crosses the equator) is used in
        combination with the input distance.

        The primary use-case of this method is for querying an OctTree for
        nearby Records.

        Parameters
        ----------
        point : SpaceTimeRecord
        dist : float,
263
        t_dist : datetime.timedelta
Joseph Siddons's avatar
Joseph Siddons committed
264 265 266 267 268

        Returns
        -------
        bool : True if the point is <= dist + max(dist(centre, corners))
        """
269
        if (
270 271
            point.datetime - t_dist > self.date + self.dt / 2
            or point.datetime + t_dist < self.date - self.dt / 2
272 273
        ):
            return False
Joseph Siddons's avatar
Joseph Siddons committed
274 275 276
        # QUESTION: Is this sufficient? Possibly it is overkill
        return (
            haversine(self.lon, self.lat, point.lon, point.lat)
277
            <= dist + self.edge_dist
278 279 280 281
        )


class SpaceTimeEllipse:
282 283 284 285 286 287 288 289 290
    """
    A simple Ellipse Class for an ellipse on the surface of a sphere.

    Parameters
    ----------
    lon : float
        Horizontal centre of the ellipse
    lat : float
        Vertical centre of the ellipse
291
    datetime : datetime.datetime
292 293 294 295 296 297 298
        Datetime centre of the ellipse.
    a : float
        Length of the semi-major axis
    b : float
        Length of the semi-minor axis
    theta : float
        Angle of the semi-major axis from horizontal anti-clockwise in radians
299
    dt : datetime.timedelta
300 301
        (full) time extent of the ellipse.
    """
302 303 304 305 306

    def __init__(
        self,
        lon: float,
        lat: float,
307
        datetime: datetime.datetime,
308 309 310
        a: float,
        b: float,
        theta: float,
311
        dt: datetime.timedelta,
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    ) -> None:
        self.a = a
        self.b = b
        self.lon = lon
        self.lat = lat
        self.datetime = datetime
        self.dt = dt
        # theta is anti-clockwise angle from horizontal in radians
        self.theta = theta
        # bearing is angle clockwise from north in degrees
        self.bearing = (90 - degrees(self.theta)) % 360

        a2 = self.a * self.a
        b2 = self.b * self.b

        self.c = sqrt(a2 - b2)
        self.p1_lon, self.p1_lat = destination(
            self.lon,
            self.lat,
            self.bearing,
            self.c,
        )
        self.p2_lon, self.p2_lat = destination(
            self.lon,
            self.lat,
337
            (self.bearing - 180) % 360,
338 339
            self.c,
        )
340 341
        self.start = self.datetime - self.dt / 2
        self.end = self.datetime + self.dt / 2
342 343 344

    def contains(self, point: SpaceTimeRecord) -> bool:
        """Test if a point is contained within the Ellipse"""
345 346
        if point.datetime > self.end or point.datetime < self.start:
            return False
347
        return (
348 349 350
            haversine(self.p1_lon, self.p1_lat, point.lon, point.lat)
            + haversine(self.p2_lon, self.p2_lat, point.lon, point.lat)
        ) <= 2 * self.a
351 352 353

    def nearby_rect(self, rect: SpaceTimeRectangle) -> bool:
        """Test if a rectangle is near to the Ellipse"""
354
        if rect.start > self.end or rect.end < self.start:
355 356 357 358
            return False
        # TODO: Check corners, and 0 lat
        return (
            haversine(self.p1_lon, self.p1_lat, rect.lon, rect.lat)
359
            <= rect.edge_dist + self.a
360
            and haversine(self.p2_lon, self.p2_lat, rect.lon, rect.lat)
361
            <= rect.edge_dist + self.a
Joseph Siddons's avatar
Joseph Siddons committed
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
        )


class OctTree:
    """
    A Simple OctTree class for PyCOADS.

    Acts as a space-time OctTree on the surface of Earth, allowing for querying
    nearby points faster than searching a full DataFrame. As SpaceTimeRecords
    are added to the OctTree, the OctTree divides into 8 children as the
    capacity is reached. Additional SpaceTimeRecords are then added to the
    children where they fall within the child OctTree's boundary.

    SpaceTimeRecords already part of the OctTree before divided are not
    distributed to the children OctTrees.

    Whilst the OctTree has a temporal component, and was designed to utilise
    datetime / timedelta objects, numeric values and ranges can be used. This
    usage must be consistent for the boundary and all SpaceTimeRecords that
    are part of the OctTree. This allows for usage of pentad, timestamp,
    Julian day, etc. as datetime values.

    Parameters
    ----------
    boundary : SpaceTimeRectangle
        The bounding SpaceTimeRectangle of the QuadTree
    capacity : int
        The capacity of each cell, if max_depth is set then a cell at the
        maximum depth may contain more points than the capacity.
    depth : int
        The current depth of the cell. Initialises to zero if unset.
    max_depth : int | None
        The maximum depth of the QuadTree. If set, this can override the
        capacity for cells at the maximum depth.
    """

    def __init__(
        self,
        boundary: SpaceTimeRectangle,
        capacity: int = 5,
        depth: int = 0,
        max_depth: int | None = None,
    ) -> None:
        self.boundary = boundary
        self.capacity = capacity
        self.depth = depth
        self.max_depth = max_depth
        self.points = SpaceTimeRecords()
        self.divided: bool = False
        return None

    def __str__(self) -> str:
        indent = "    " * self.depth
        out = f"{indent}OctTree:\n"
        out += f"{indent}- boundary: {self.boundary}\n"
        out += f"{indent}- capacity: {self.capacity}\n"
        out += f"{indent}- depth: {self.depth}\n"
        if self.max_depth:
            out += f"{indent}- max_depth: {self.max_depth}\n"
        if self.points:
            out += f"{indent}- contents:\n"
            out += f"{indent}- number of elements: {len(self.points)}\n"
            for p in self.points:
                out += f"{indent}  * {p}\n"
        if self.divided:
            out += f"{indent}- with children:\n"
            out += f"{self.northwestback}"
            out += f"{self.northeastback}"
            out += f"{self.southwestback}"
            out += f"{self.southeastback}"
            out += f"{self.northwestfwd}"
            out += f"{self.northeastfwd}"
            out += f"{self.southwestfwd}"
            out += f"{self.southeastfwd}"
        return out

    def divide(self):
        """Divide the QuadTree"""
        self.northwestfwd = OctTree(
            SpaceTimeRectangle(
                self.boundary.lon - self.boundary.lon_range / 4,
                self.boundary.lat + self.boundary.lat_range / 4,
444
                self.boundary.date + self.boundary.dt / 4,
Joseph Siddons's avatar
Joseph Siddons committed
445 446 447 448 449 450 451 452 453 454 455 456
                self.boundary.lon_range / 2,
                self.boundary.lat_range / 2,
                self.boundary.dt / 2,
            ),
            capacity=self.capacity,
            depth=self.depth + 1,
            max_depth=self.max_depth,
        )
        self.northeastfwd = OctTree(
            SpaceTimeRectangle(
                self.boundary.lon + self.boundary.lon_range / 4,
                self.boundary.lat + self.boundary.lat_range / 4,
457
                self.boundary.date + self.boundary.dt / 4,
Joseph Siddons's avatar
Joseph Siddons committed
458 459 460 461 462 463 464 465 466 467 468 469
                self.boundary.lon_range / 2,
                self.boundary.lat_range / 2,
                self.boundary.dt / 2,
            ),
            capacity=self.capacity,
            depth=self.depth + 1,
            max_depth=self.max_depth,
        )
        self.southwestfwd = OctTree(
            SpaceTimeRectangle(
                self.boundary.lon - self.boundary.lon_range / 4,
                self.boundary.lat - self.boundary.lat_range / 4,
470
                self.boundary.date + self.boundary.dt / 4,
Joseph Siddons's avatar
Joseph Siddons committed
471 472 473 474 475 476 477 478 479 480 481 482
                self.boundary.lon_range / 2,
                self.boundary.lat_range / 2,
                self.boundary.dt / 2,
            ),
            capacity=self.capacity,
            depth=self.depth + 1,
            max_depth=self.max_depth,
        )
        self.southeastfwd = OctTree(
            SpaceTimeRectangle(
                self.boundary.lon + self.boundary.lon_range / 4,
                self.boundary.lat - self.boundary.lat_range / 4,
483
                self.boundary.date + self.boundary.dt / 4,
Joseph Siddons's avatar
Joseph Siddons committed
484 485 486 487 488 489 490 491 492 493 494 495
                self.boundary.lon_range / 2,
                self.boundary.lat_range / 2,
                self.boundary.dt / 2,
            ),
            capacity=self.capacity,
            depth=self.depth + 1,
            max_depth=self.max_depth,
        )
        self.northwestback = OctTree(
            SpaceTimeRectangle(
                self.boundary.lon - self.boundary.lon_range / 4,
                self.boundary.lat + self.boundary.lat_range / 4,
496
                self.boundary.date - self.boundary.dt / 4,
Joseph Siddons's avatar
Joseph Siddons committed
497 498 499 500 501 502 503 504 505 506 507 508
                self.boundary.lon_range / 2,
                self.boundary.lat_range / 2,
                self.boundary.dt / 2,
            ),
            capacity=self.capacity,
            depth=self.depth + 1,
            max_depth=self.max_depth,
        )
        self.northeastback = OctTree(
            SpaceTimeRectangle(
                self.boundary.lon + self.boundary.lon_range / 4,
                self.boundary.lat + self.boundary.lat_range / 4,
509
                self.boundary.date - self.boundary.dt / 4,
Joseph Siddons's avatar
Joseph Siddons committed
510 511 512 513 514 515 516 517 518 519 520 521
                self.boundary.lon_range / 2,
                self.boundary.lat_range / 2,
                self.boundary.dt / 2,
            ),
            capacity=self.capacity,
            depth=self.depth + 1,
            max_depth=self.max_depth,
        )
        self.southwestback = OctTree(
            SpaceTimeRectangle(
                self.boundary.lon - self.boundary.lon_range / 4,
                self.boundary.lat - self.boundary.lat_range / 4,
522
                self.boundary.date - self.boundary.dt / 4,
Joseph Siddons's avatar
Joseph Siddons committed
523 524 525 526 527 528 529 530 531 532 533 534
                self.boundary.lon_range / 2,
                self.boundary.lat_range / 2,
                self.boundary.dt / 2,
            ),
            capacity=self.capacity,
            depth=self.depth + 1,
            max_depth=self.max_depth,
        )
        self.southeastback = OctTree(
            SpaceTimeRectangle(
                self.boundary.lon + self.boundary.lon_range / 4,
                self.boundary.lat - self.boundary.lat_range / 4,
535
                self.boundary.date - self.boundary.dt / 4,
Joseph Siddons's avatar
Joseph Siddons committed
536 537 538 539 540 541 542 543 544 545 546
                self.boundary.lon_range / 2,
                self.boundary.lat_range / 2,
                self.boundary.dt / 2,
            ),
            capacity=self.capacity,
            depth=self.depth + 1,
            max_depth=self.max_depth,
        )
        self.divided = True

    def _datetime_is_numeric(self) -> bool:
547
        return not isinstance(self.boundary.date, datetime)
Joseph Siddons's avatar
Joseph Siddons committed
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

    def insert(self, point: SpaceTimeRecord) -> bool:
        """
        Insert a SpaceTimeRecord into the QuadTree.

        Note that the SpaceTimeRecord can have numeric datetime values if that
        is consistent with the OctTree.
        """
        if not self.boundary.contains(point):
            return False
        elif self.max_depth and self.depth == self.max_depth:
            self.points.append(point)
            return True
        elif len(self.points) < self.capacity:
            self.points.append(point)
            return True
        else:
            if not self.divided:
                self.divide()
            if self.northwestback.insert(point):
                return True
            elif self.northeastback.insert(point):
                return True
            elif self.southwestback.insert(point):
                return True
            elif self.southeastback.insert(point):
                return True
            elif self.northwestfwd.insert(point):
                return True
            elif self.northeastfwd.insert(point):
                return True
            elif self.southwestfwd.insert(point):
                return True
            elif self.southeastfwd.insert(point):
                return True
            return False

    def query(
        self,
        rect: SpaceTimeRectangle,
        points: SpaceTimeRecords | None = None,
    ) -> SpaceTimeRecords:
        """Get points that fall in a SpaceTimeRectangle"""
        if not points:
            points = SpaceTimeRecords()
        if not self.boundary.intersects(rect):
            return points

        for point in self.points:
            if rect.contains(point):
                points.append(point)

        if self.divided:
            points = self.northwestfwd.query(rect, points)
            points = self.northeastfwd.query(rect, points)
            points = self.southwestfwd.query(rect, points)
            points = self.southeastfwd.query(rect, points)
            points = self.northwestback.query(rect, points)
            points = self.northeastback.query(rect, points)
            points = self.southwestback.query(rect, points)
            points = self.southeastback.query(rect, points)

        return points

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    def query_ellipse(
        self,
        ellipse: SpaceTimeEllipse,
        points: SpaceTimeRecords | None = None,
    ) -> SpaceTimeRecords:
        """Get points that fall in an ellipse."""
        if not points:
            points = SpaceTimeRecords()
        if not ellipse.nearby_rect(self.boundary):
            return points

        for point in self.points:
            if ellipse.contains(point):
                points.append(point)

        if self.divided:
            points = self.northwestfwd.query_ellipse(ellipse, points)
            points = self.northeastfwd.query_ellipse(ellipse, points)
            points = self.southwestfwd.query_ellipse(ellipse, points)
            points = self.southeastfwd.query_ellipse(ellipse, points)
            points = self.northwestback.query_ellipse(ellipse, points)
            points = self.northeastback.query_ellipse(ellipse, points)
            points = self.southwestback.query_ellipse(ellipse, points)
            points = self.southeastback.query_ellipse(ellipse, points)

        return points

Joseph Siddons's avatar
Joseph Siddons committed
639 640 641 642
    def nearby_points(
        self,
        point: SpaceTimeRecord,
        dist: float,
643
        t_dist: datetime.timedelta,
Joseph Siddons's avatar
Joseph Siddons committed
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
        points: SpaceTimeRecords | None = None,
    ) -> SpaceTimeRecords:
        """
        Get all points that are nearby another point.

        Query the OctTree to find all SpaceTimeRecords within the OctTree that
        are nearby to the query SpaceTimeRecord. This search should be faster
        than searching through all records, since only OctTree children whose
        boundaries are close to the query SpaceTimeRecord are evaluated.

        Parameters
        ----------
        point : SpaceTimeRecord
            The query point.
        dist : float
            The distance for comparison. Note that Haversine distance is used
            as the distance metric as the query SpaceTimeRecord and OctTree are
            assumed to lie on the surface of Earth.
662
        t_dist : datetime.timedelta
Joseph Siddons's avatar
Joseph Siddons committed
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
            Max time gap between SpaceTimeRecords within the OctTree and the
            query SpaceTimeRecord. Can be numeric if the OctTree boundaries,
            SpaceTimeRecords, and query SpaceTimeRecord have numeric datetime
            values and ranges.
        points : SpaceTimeRecords | None
            List of SpaceTimeRecords already found. Most use cases will be to
            not set this value, since it's main use is for passing onto the
            children OctTrees.

        Returns
        -------
        SpaceTimeRecords : A list of SpaceTimeRecords whose distance to the
        query SpaceTimeRecord is <= dist, and the datetimes of the
        SpaceTimeRecords fall within the datetime range of the query
        SpaceTimeRecord.
        """
        if not points:
            points = SpaceTimeRecords()
        if not self.boundary.nearby(point, dist, t_dist):
            return points

        for test_point in self.points:
            if (
                haversine(point.lon, point.lat, test_point.lon, test_point.lat)
                <= dist
                and test_point.datetime <= point.datetime + t_dist
                and test_point.datetime >= point.datetime - t_dist
            ):
                points.append(test_point)

        if self.divided:
            points = self.northwestback.nearby_points(
                point, dist, t_dist, points
            )
            points = self.northeastback.nearby_points(
                point, dist, t_dist, points
            )
            points = self.southwestback.nearby_points(
                point, dist, t_dist, points
            )
            points = self.southeastback.nearby_points(
                point, dist, t_dist, points
            )
            points = self.northwestfwd.nearby_points(
                point, dist, t_dist, points
            )
            points = self.northeastfwd.nearby_points(
                point, dist, t_dist, points
            )
            points = self.southwestfwd.nearby_points(
                point, dist, t_dist, points
            )
            points = self.southeastfwd.nearby_points(
                point, dist, t_dist, points
            )

        return points