AirSeaFluxCode.py 25.3 KB
Newer Older
sbiri's avatar
sbiri committed
1
import numpy as np
2
import pandas as pd
sbiri's avatar
sbiri committed
3
import logging
sbiri's avatar
sbiri committed
4
from get_init import get_init
5
from hum_subs import (get_hum, gamma_moist)
sbiri's avatar
sbiri committed
6
from util_subs import (kappa, CtoK, get_heights)
7 8
from flux_subs import (cs_C35, cs_Beljaars, cs_ecmwf, wl_ecmwf,
                       get_gust, get_L, get_strs, psim_calc,
sbiri's avatar
sbiri committed
9
                       psit_calc, cdn_calc, cd_calc, ctcq_calc, ctcqn_calc)
sbiri's avatar
sbiri committed
10 11


12 13 14 15 16 17 18

def AirSeaFluxCode(spd, T, SST, lat=None, hum=None, P=None, hin=18, hout=10,
                   Rl=None, Rs=None, cskin=None, skin="C35", wl=0, gust=None,
                   meth="S80", qmeth="Buck2", tol=None, n=10, out=0, L=None):
    """
    Calculates turbulent surface fluxes using different parameterizations
    Calculates height adjusted values for spd, T, q
sbiri's avatar
sbiri committed
19 20 21 22 23 24 25 26 27 28 29

    Parameters
    ----------
        spd : float
            relative wind speed in m/s (is assumed as magnitude difference
            between wind and surface current vectors)
        T : float
            air temperature in K (will convert if < 200)
        SST : float
            sea surface temperature in K (will convert if < 200)
        lat : float
30 31 32
            latitude (deg), default 45deg
        hum : float
            humidity input switch 2x1 [x, values] default is relative humidity
33 34 35
            x='rh' : relative humidity in %
            x='q' : specific humidity (g/kg)
            x='Td' : dew point temperature (K)
sbiri's avatar
sbiri committed
36
        P : float
37
            air pressure (hPa), default 1013hPa
sbiri's avatar
sbiri committed
38
        hin : float
39
            sensor heights in m (array 3x1 or 3xn), default 18m
sbiri's avatar
sbiri committed
40 41 42 43 44 45
        hout : float
            output height, default is 10m
        Rl : float
            downward longwave radiation (W/m^2)
        Rs : float
            downward shortwave radiation (W/m^2)
sbiri's avatar
sbiri committed
46
        cskin : int
47 48
            0 switch cool skin adjustment off, else 1
            default is 1
49 50 51 52
        skin : str
            cool skin method option "C35", "ecmwf" or "Beljaars"
        wl : int
            warm layer correction default is 0, to switch on set to 1
53
        gust : int
54 55
            3x1 [x, beta, zi] x=1 to include the effect of gustiness, else 0
            beta gustiness parameter, beta=1 for UA, beta=1.2 for COARE
56
            zi PBL height (m) 600 for COARE, 1000 for UA and ecmwf, 800 default
57
            default for COARE [1, 1.2, 600]
58
            default for UA, ecmwf [1, 1, 1000]
59 60
            default else [1, 1.2, 800]
        meth : str
61 62
            "S80", "S88", "LP82", "YT96", "UA", "LY04", "C30", "C35", "C40",
            "ecmwf", "Beljaars"
63 64
        qmeth : str
            is the saturation evaporation method to use amongst
65 66
            "HylandWexler","Hardy","Preining","Wexler","GoffGratch","WMO",
            "MagnusTetens","Buck","Buck2","WMO2018","Sonntag","Bolton",
67 68 69 70 71 72 73
            "IAPWS","MurphyKoop"]
            default is Buck2
        tol : float
           4x1 or 7x1 [option, lim1-3 or lim1-6]
           option : 'flux' to set tolerance limits for fluxes only lim1-3
           option : 'ref' to set tolerance limits for height adjustment lim-1-3
           option : 'all' to set tolerance limits for both fluxes and height
74
                    adjustment lim1-6 ['all', 0.01, 0.01, 1e-05, 1e-3, 0.1, 0.1]
75
           default is tol=['flux', 1e-3, 0.1, 0.1]
sbiri's avatar
sbiri committed
76
        n : int
77 78 79 80
            number of iterations (defautl = 10)
        out : int
            set 0 to set points that have not converged to missing (default)
            set 1 to keep points
81
        L : str
sbiri's avatar
sbiri committed
82
           Monin-Obukhov length definition options
83
           "S80"  : default for S80, S88, LP82, YT96 and LY04
84 85
           "ecmwf" : following ecmwf (IFS Documentation cy46r1), default for
           ecmwf
sbiri's avatar
sbiri committed
86 87 88
    Returns
    -------
        res : array that contains
89
                       1. momentum flux (N/m^2)
sbiri's avatar
sbiri committed
90 91
                       2. sensible heat (W/m^2)
                       3. latent heat (W/m^2)
92
                       4. Monin-Obhukov length (mb)
sbiri's avatar
sbiri committed
93 94 95 96 97 98 99 100 101 102 103
                       5. drag coefficient (cd)
                       6. neutral drag coefficient (cdn)
                       7. heat exhange coefficient (ct)
                       8. neutral heat exhange coefficient (ctn)
                       9. moisture exhange coefficient (cq)
                       10. neutral moisture exhange coefficient (cqn)
                       11. star virtual temperature (tsrv)
                       12. star temperature (tsr)
                       13. star humidity (qsr)
                       14. star velocity (usr)
                       15. momentum stability function (psim)
104 105 106 107 108 109 110 111 112
                       16. heat stability function (psit)
                       17. moisture stability function (psiq)
                       18. 10m neutral velocity (u10n)
                       19. 10m neutral temperature (t10n)
                       20. 10m neutral virtual temperature (tv10n)
                       21. 10m neutral specific humidity (q10n)
                       22. surface roughness length (zo)
                       23. heat roughness length (zot)
                       24. moisture roughness length (zoq)
113 114 115
                       25. velocity at reference height (uref)
                       26. temperature at reference height (tref)
                       27. specific humidity at reference height (qref)
116
                       28. number of iterations until convergence
117 118
                       29. cool-skin temperature depression (dter)
                       30. cool-skin humidity depression (dqer)
119 120 121 122 123 124
                       31. warm layer correction (dtwl)
                       32. specific humidity of air (qair)
                       33. specific humidity at sea surface (qsea)
                       34. downward longwave radiation (Rl)
                       35. downward shortwave radiation (Rs)
                       36. downward net longwave radiation (Rnl)
125
                       37. flag ("n": normal, "o": out of nominal range,
126
                                 "u": u10n<0, "q":q10n<0
127
                                 "m": missing, "l": z/L<0.01,
128
                                 "i": convergence fail at n)
129

130
    2021 / Author S. Biri
sbiri's avatar
sbiri committed
131 132 133
    """
    logging.basicConfig(filename='flux_calc.log',
                        format='%(asctime)s %(message)s',level=logging.INFO)
134 135
    logging.captureWarnings(True)
    #  check input values and set defaults where appropriate
136 137 138 139
    lat, P, Rl, Rs, cskin, skin, wl, gust, tol, L = get_init(spd, T, SST, lat,
                                                              P, Rl, Rs, cskin,
                                                              skin, wl, gust, L,
                                                              tol, meth, qmeth)
140
    flag = np.ones(spd.shape, dtype="object")*"n"
141 142 143
    flag = np.where(np.isnan(spd+T+SST+lat+hum[1]+P+Rs) & (flag == "n"),
                    "m", np.where(np.isnan(spd+T+SST+lat+hum[1]+P+Rs) &
                                  (flag != "n"), flag+[","]+["m"], flag))
144
    ref_ht = 10        # reference height
145 146
    h_in = get_heights(hin, len(spd))  # heights of input measurements/fields
    h_out = get_heights(hout, 1)       # desired height of output variables
147
    logging.info('method %s, inputs: lat: %s | P: %s | Rl: %s |'
148
                 ' Rs: %s | gust: %s | cskin: %s | L : %s', meth,
149
                 np.nanmedian(lat), np.nanmedian(P), np.nanmedian(Rl),
150
                 np.nanmedian(Rs), gust, cskin, L)
151
    #  set up/calculate temperatures and specific humidities
152
    th = np.where(T < 200, (np.copy(T)+CtoK) *
sbiri's avatar
sbiri committed
153 154
                  np.power(1000/P,287.1/1004.67),
                  np.copy(T)*np.power(1000/P,287.1/1004.67))  # potential T
155
    sst = np.where(SST < 200, np.copy(SST)+CtoK, np.copy(SST))
156
    qair, qsea = get_hum(hum, T, sst, P, qmeth)
157
    Rb = np.empty(sst.shape)
158 159 160 161
    #lapse rate
    tlapse = gamma_moist(SST, T, qair/1000)
    Ta = np.where(T < 200, np.copy(T)+CtoK+tlapse*h_in[1],
                  np.copy(T)+tlapse*h_in[1])  # convert to Kelvin if needed
162 163
    logging.info('method %s and q method %s | qsea:%s, qair:%s', meth, qmeth,
                  np.nanmedian(qsea), np.nanmedian(qair))
sbiri's avatar
sbiri committed
164 165
    if (np.all(np.isnan(qsea)) or np.all(np.isnan(qair))):
        print("qsea and qair cannot be nan")
166

sbiri's avatar
sbiri committed
167 168
    dt = Ta - sst
    dq = qair - qsea
169

170
    #  first guesses
sbiri's avatar
sbiri committed
171
    t10n, q10n = np.copy(Ta), np.copy(qair)
172
    tv10n = t10n*(1+0.6077*q10n)
sbiri's avatar
sbiri committed
173
    #  Zeng et al. 1998
174 175
    tv=th*(1+0.6077*qair)   # virtual potential T
    dtv=dt*(1+0.6077*qair)+0.6077*th*dq
sbiri's avatar
sbiri committed
176
    # ------------
177
    rho = P*100/(287.1*tv10n)
178
    lv = (2.501-0.00237*(sst-CtoK))*1e6
sbiri's avatar
sbiri committed
179 180
    cp = 1004.67*(1 + 0.00084*qsea)
    u10n = np.copy(spd)
181 182
    cd10n = cdn_calc(u10n, Ta, None, lat, meth)
    ct10n, ct, cq10n, cq = (np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan,
183 184 185
                        np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan)
    psim, psit, psiq = (np.zeros(spd.shape), np.zeros(spd.shape),
                        np.zeros(spd.shape))
186
    cd = cd_calc(cd10n, h_in[0], ref_ht, psim)
187 188
    tsr, tsrv = np.zeros(spd.shape), np.zeros(spd.shape)
    qsr = np.zeros(spd.shape)
sbiri's avatar
sbiri committed
189
    # cskin parameters
190
    tkt = 0.001*np.ones(T.shape)
sbiri's avatar
sbiri committed
191
    dter = np.ones(T.shape)*0.3
192
    dqer = dter*0.622*lv*qsea/(287.1*np.power(sst, 2))
193 194 195 196
    Rnl = 0.97*(5.67e-8*np.power(sst-0.3*cskin, 4)-Rl)
    Qs = 0.945*Rs
    dtwl = np.ones(T.shape)*0.3
    skt = np.copy(sst)
197
    # gustiness adjustment
198
    if (gust[0] == 1 and meth == "UA"):
199 200
        wind = np.where(dtv >= 0, np.where(spd > 0.1, spd, 0.1),
                        np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2)))
201
    elif (gust[0] == 1):
202
        wind = np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2))
203
    elif (gust[0] == 0):
204
        wind = np.copy(spd)
205
    # stars and roughness lengths
206 207 208 209
    usr = np.sqrt(cd*np.power(wind, 2))
    zo = 0.0001*np.ones(spd.shape)
    zot, zoq = 0.0001*np.ones(spd.shape), 0.0001*np.ones(spd.shape)
    monob = -100*np.ones(spd.shape)  # Monin-Obukhov length
210 211
    tsr = (dt+dter*cskin-dtwl*wl)*kappa/(np.log(h_in[1]/zot) -
                                         psit_calc(h_in[1]/monob, meth))
sbiri's avatar
sbiri committed
212
    qsr = (dq+dqer*cskin)*kappa/(np.log(h_in[2]/zoq) -
213
                                 psit_calc(h_in[2]/monob, meth))
214
    # set-up to feed into iteration loop
215 216
    it, ind = 0, np.where(spd > 0)
    ii, itera = True, np.zeros(spd.shape)*np.nan
217 218 219
    tau = 0.05*np.ones(spd.shape)
    sensible = 5*np.ones(spd.shape)
    latent = 65*np.ones(spd.shape)
220
    #  iteration loop
sbiri's avatar
sbiri committed
221 222 223 224
    while np.any(ii):
        it += 1
        if it > n:
            break
225 226 227 228 229 230 231
        if (tol[0] == 'flux'):
            old = np.array([np.copy(tau), np.copy(sensible), np.copy(latent)])
        elif (tol[0] == 'ref'):
            old = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n)])
        elif (tol[0] == 'all'):
            old = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n),
                            np.copy(tau), np.copy(sensible), np.copy(latent)])
232 233
        cd10n[ind] = cdn_calc(u10n[ind], Ta[ind], None, lat[ind], meth)
        if (np.all(np.isnan(cd10n))):
234
            break
235 236
            logging.info('break %s at iteration %s cd10n<0', meth, it)
        zo[ind] = ref_ht/np.exp(kappa/np.sqrt(cd10n[ind]))
237
        psim[ind] = psim_calc(h_in[0, ind]/monob[ind], meth)
238 239 240 241
        cd[ind] = cd_calc(cd10n[ind], h_in[0, ind], ref_ht, psim[ind])
        ct10n[ind], cq10n[ind] = ctcqn_calc(h_in[1, ind]/monob[ind],
                                            cd10n[ind], u10n[ind], zo[ind],
                                            Ta[ind], meth)
242
        zot[ind] = ref_ht/(np.exp(np.power(kappa, 2) /
243
                           (ct10n[ind]*np.log(ref_ht/zo[ind]))))
244
        zoq[ind] = ref_ht/(np.exp(np.power(kappa, 2) /
245
                           (cq10n[ind]*np.log(ref_ht/zo[ind]))))
246 247
        psit[ind] = psit_calc(h_in[1, ind]/monob[ind], meth)
        psiq[ind] = psit_calc(h_in[2, ind]/monob[ind], meth)
248
        ct[ind], cq[ind] = ctcq_calc(cd10n[ind], cd[ind], ct10n[ind], cq10n[ind],
249 250
                                      h_in[1, ind], h_in[2, ind], ref_ht,
                                      psit[ind], psiq[ind])
sbiri's avatar
sbiri committed
251 252 253
        usr[ind], tsr[ind], qsr[ind] = get_strs(h_in[:, ind], monob[ind],
                                                wind[ind], zo[ind], zot[ind],
                                                zoq[ind], dt[ind], dq[ind],
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
                                                dter[ind], dqer[ind], dtwl[ind],
                                                ct[ind], cq[ind], cskin, wl,
                                                meth)
        if ((cskin == 1) and (wl == 0)):
            if (skin == "C35"):
                dter[ind], dqer[ind], tkt[ind] = cs_C35(sst[ind], qsea[ind],
                                                        rho[ind], Rs[ind],
                                                        Rnl[ind],
                                                        cp[ind], lv[ind],
                                                        np.copy(tkt[ind]),
                                                        usr[ind], tsr[ind],
                                                        qsr[ind], lat[ind])
            elif (skin == "ecmwf"):
                dter[ind] = cs_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     sst[ind], lat[ind])
                dqer[ind] = (dter[ind]*0.622*lv[ind]*qsea[ind] /
                             (287.1*np.power(sst[ind], 2)))
            elif (skin == "Beljaars"):
                Qs[ind], dter[ind] = cs_Beljaars(rho[ind], Rs[ind], Rnl[ind],
                                                 cp[ind], lv[ind], usr[ind],
                                                 tsr[ind], qsr[ind], lat[ind],
                                                 np.copy(Qs[ind]))
                dqer = dter*0.622*lv*qsea/(287.1*np.power(sst, 2))
        elif ((cskin == 1) and (wl == 1)):
            if (skin == "C35"):
                dter[ind], dqer[ind], tkt[ind] = cs_C35(sst[ind], qsea[ind],
                                                        rho[ind], Rs[ind],
                                                        Rnl[ind],
                                                        cp[ind], lv[ind],
                                                        np.copy(tkt[ind]),
                                                        usr[ind], tsr[ind],
                                                        qsr[ind], lat[ind])
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
            elif (skin == "ecmwf"):
                dter[ind] = cs_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     sst[ind], lat[ind])
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
                dqer[ind] = (dter[ind]*0.622*lv[ind]*qsea[ind] /
                             (287.1*np.power(skt[ind], 2)))
            elif (skin == "Beljaars"):
                Qs[ind], dter[ind] = cs_Beljaars(rho[ind], Rs[ind], Rnl[ind],
                                                 cp[ind], lv[ind], usr[ind],
                                                 tsr[ind], qsr[ind], lat[ind],
                                                 np.copy(Qs[ind]))
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
                dqer = dter*0.622*lv*qsea/(287.1*np.power(skt, 2))
314 315 316
        else:
           dter[ind] = np.zeros(sst[ind].shape)
           dqer[ind] = np.zeros(sst[ind].shape)
317
           tkt[ind] = 0.001*np.ones(T[ind].shape)
sbiri's avatar
sbiri committed
318 319 320 321 322 323
        logging.info('method %s | dter = %s | dqer = %s | tkt = %s | Rnl = %s '
                     '| usr = %s | tsr = %s | qsr = %s', meth,
                     np.nanmedian(dter), np.nanmedian(dqer),
                     np.nanmedian(tkt), np.nanmedian(Rnl),
                     np.nanmedian(usr), np.nanmedian(tsr),
                     np.nanmedian(qsr))
324 325
        Rnl[ind] = 0.97*(5.67e-8*np.power(sst[ind] -
                          dter[ind]*cskin, 4)-Rl[ind])
326 327 328 329
        t10n[ind] = (Ta[ind] -
                     tsr[ind]/kappa*(np.log(h_in[1, ind]/ref_ht)-psit[ind]))
        q10n[ind] = (qair[ind] -
                     qsr[ind]/kappa*(np.log(h_in[2, ind]/ref_ht)-psiq[ind]))
330 331 332 333 334 335 336 337
        tv10n[ind] = t10n[ind]*(1+0.6077*q10n[ind])
        tsrv[ind], monob[ind], Rb[ind] = get_L(L, lat[ind], usr[ind], tsr[ind],
                                               qsr[ind], h_in[:, ind], Ta[ind],
                                               sst[ind]-dter[ind]*cskin+dtwl[ind]*wl,
                                               qair[ind], qsea[ind], wind[ind],
                                               np.copy(monob[ind]), psim[ind],
                                               meth)
        # sst[ind]-dter[ind]*cskin+dtwl[ind]*wl
338 339 340
        psim[ind] = psim_calc(h_in[0, ind]/monob[ind], meth)
        psit[ind] = psit_calc(h_in[1, ind]/monob[ind], meth)
        psiq[ind] = psit_calc(h_in[2, ind]/monob[ind], meth)
341
        if (gust[0] == 1 and meth == "UA"):
sbiri's avatar
sbiri committed
342
            wind[ind] = np.where(dtv[ind] >= 0, np.where(spd[ind] > 0.1,
343 344 345 346 347 348 349
                                  spd[ind], 0.1),
                                  np.sqrt(np.power(np.copy(spd[ind]), 2) +
                                  np.power(get_gust(gust[1], tv[ind], usr[ind],
                                  tsrv[ind], gust[2], lat[ind]), 2)))
                                  # Zeng et al. 1998 (20)
        elif (gust[0] == 1 and (meth == "C30" or meth == "C35" or
                                meth == "C40")):
sbiri's avatar
sbiri committed
350
            wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) +
351 352 353
                                np.power(get_gust(gust[1], Ta[ind], usr[ind],
                                tsrv[ind], gust[2], lat[ind]), 2))
        elif (gust[0] == 1):
354
            wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) +
355 356 357
                                np.power(get_gust(gust[1], Ta[ind], usr[ind],
                                tsrv[ind], gust[2], lat[ind]), 2))
        elif (gust[0] == 0):
358
            wind[ind] = np.copy(spd[ind])
359 360
        u10n[ind] = wind[ind]-usr[ind]/kappa*(np.log(h_in[0, ind]/10) -
                                              psim[ind])
361 362 363
        flag = np.where((u10n < 0) & (flag == "n"), "u",
                        np.where((u10n < 0) & (flag != "n"), flag+[","]+["u"],
                                 flag))
sbiri's avatar
sbiri committed
364
        u10n = np.where(u10n < 0, np.nan, u10n)
sbiri's avatar
sbiri committed
365
        itera[ind] = np.ones(1)*it
366 367 368 369 370 371 372 373 374 375 376 377 378
        sensible = -rho*cp*usr*tsr
        latent = -rho*lv*usr*qsr
        if (gust[0] == 1):
            tau = rho*np.power(usr, 2)*(spd/wind)
        elif (gust[0] == 0):
            tau = rho*np.power(usr, 2)
        if (tol[0] == 'flux'):
            new = np.array([np.copy(tau), np.copy(sensible), np.copy(latent)])
        elif (tol[0] == 'ref'):
            new = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n)])
        elif (tol[0] == 'all'):
            new = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n),
                            np.copy(tau), np.copy(sensible), np.copy(latent)])
379
        d = np.abs(new-old)
380 381
        if (tol[0] == 'flux'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
382
                            (d[2, :] > tol[3]))
383 384
        elif (tol[0] == 'ref'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
385
                            (d[2, :] > tol[3]))
386 387
        elif (tol[0] == 'all'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
388 389
                            (d[2, :] > tol[3])+(d[3, :] > tol[4]) +
                            (d[4, :] > tol[5])+(d[5, :] > tol[6]))
390 391
        if (ind[0].size == 0):
            ii = False
sbiri's avatar
sbiri committed
392
        else:
393
            ii = True
394
    itera[ind] = -1
395
    # itera = np.where(itera > n, -1, itera)
396
    logging.info('method %s | # of iterations:%s', meth, it)
sbiri's avatar
sbiri committed
397
    logging.info('method %s | # of points that did not converge :%s', meth,
398
                  ind[0].size)
sbiri's avatar
sbiri committed
399
    # calculate output parameters
400
    rho = (0.34838*P)/(tv10n)
sbiri's avatar
sbiri committed
401
    t10n = t10n-(273.16+tlapse*ref_ht)
402 403 404 405 406 407 408 409 410 411 412 413 414
    # solve for zo from cd10n
    zo = ref_ht/np.exp(kappa/np.sqrt(cd10n))
    # adjust neutral cdn at any output height
    cdn = np.power(kappa/np.log(hout/zo), 2)
    cd = cd_calc(cdn, h_in[0], h_out[0], psim)
     # solve for zot, zoq from ct10n, cq10n
    zot = ref_ht/(np.exp(kappa**2/(ct10n*np.log(ref_ht/zo))))
    zoq = ref_ht/(np.exp(kappa**2/(cq10n*np.log(ref_ht/zo))))
    # adjust neutral ctn, cqn at any output height
    ctn =np.power(kappa,2)/(np.log(hout/zo)*np.log(hout/zot))
    cqn =np.power(kappa,2)/(np.log(hout/zo)*np.log(hout/zoq))
    ct, cq = ctcq_calc(cdn, cd, ctn, cqn, h_in[1], h_in[2], h_out[1],
                       psit, psiq)
415 416 417 418
    uref = (spd-usr/kappa*(np.log(h_in[0]/h_out[0])-psim +
            psim_calc(h_out[0]/monob, meth)))
    tref = (Ta-tsr/kappa*(np.log(h_in[1]/h_out[1])-psit +
            psit_calc(h_out[0]/monob, meth)))
419
    tref = tref-(CtoK+tlapse*h_out[1])
420 421
    qref = (qair-qsr/kappa*(np.log(h_in[2]/h_out[2]) -
            psit+psit_calc(h_out[2]/monob, meth)))
422 423 424 425 426 427 428 429 430
    flag = np.where((q10n < 0) & (flag == "n"), "q",
                    np.where((q10n < 0) & (flag != "n"), flag+[","]+["q"],
                             flag))
    flag = np.where((np.abs(hin[0]/monob) < 0.01) & (flag == "n"), "l",
                    np.where((np.abs(hin[0]/monob) < 0.01) & (flag != "n"),
                             flag+[","]+["l"], flag))
    flag = np.where((itera == -1) & (flag == "n"), "i",
                    np.where((itera == -1) & (flag != "n"), flag+[","]+["i"],
                             flag))
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    if (meth == "S80"):
        flag = np.where(((u10n < 6) | (u10n > 22)) & (flag == "n"), "o",
                        np.where(((u10n < 6) | (u10n > 22)) & (flag != "n"),
                                 flag+[","]+["o"], flag))
    elif (meth == "LP82"):
        flag = np.where(((u10n < 3) | (u10n > 25)) & (flag == "n"), "o",
                        np.where(((u10n < 3) | (u10n > 25)) & (flag != "n"),
                                 flag+[","]+["o"], flag))
    elif (meth == "YT96"):
        flag = np.where(((u10n < 3) | (u10n > 26)) & (flag == "n"), "o",
                        np.where(((u10n < 3) | (u10n > 26)) & (flag != "n"),
                                 flag+[","]+["o"], flag))
    elif (meth == "UA"):
        flag = np.where(((u10n < 0.5) | (u10n > 18)) & (flag == "n"), "o",
                        np.where(((u10n < 0.5) | (u10n > 18)) & (flag != "n"),
                                 flag+[","]+["o"], flag))
    elif (meth == "LY04"):
        flag = np.where((u10n < 0.5) & (flag == "n"), "o",
                        np.where((u10n < 0.5) & (flag != "n"),
                                 flag+[","]+["o"], flag))
    if (hum == None):
        rh = np.ones(sst.shape)*80
    elif (hum[0] == 'rh'):
        rh = hum[1]
        rh = np.where(rh > 100, np.nan, rh)
    elif (hum[0] == 'Td'):
        Td = hum[1] # dew point temperature (K)
        Td = np.where(Td < 200, np.copy(Td)+CtoK, np.copy(Td))
        T = np.where(T < 200, np.copy(T)+CtoK, np.copy(T))
        esd = 611.21*np.exp(17.502*((Td-273.16)/(Td-32.19)))
        es = 611.21*np.exp(17.502*((T-273.16)/(T-32.19)))
        rh = 100*esd/es
        rh = np.where(rh > 100, np.nan, rh)

    res = np.zeros((39, len(spd)))
sbiri's avatar
sbiri committed
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    res[0][:] = tau
    res[1][:] = sensible
    res[2][:] = latent
    res[3][:] = monob
    res[4][:] = cd
    res[5][:] = cdn
    res[6][:] = ct
    res[7][:] = ctn
    res[8][:] = cq
    res[9][:] = cqn
    res[10][:] = tsrv
    res[11][:] = tsr
    res[12][:] = qsr
    res[13][:] = usr
    res[14][:] = psim
    res[15][:] = psit
482 483 484 485 486 487 488 489
    res[16][:] = psiq
    res[17][:] = u10n
    res[18][:] = t10n
    res[19][:] = tv10n
    res[20][:] = q10n
    res[21][:] = zo
    res[22][:] = zot
    res[23][:] = zoq
490 491 492
    res[24][:] = uref
    res[25][:] = tref
    res[26][:] = qref
493
    res[27][:] = itera
494 495
    res[28][:] = dter
    res[29][:] = dqer
496 497 498 499 500 501
    res[30][:] = dtwl
    res[31][:] = qair
    res[32][:] = qsea
    res[33][:] = Rl
    res[34][:] = Rs
    res[35][:] = Rnl
502 503 504
    res[36][:] = np.sqrt(np.power(wind, 2)-np.power(spd, 2))
    res[37][:] = Rb
    res[38][:] = rh
505

506 507 508
    if (out == 0):
        res[:, ind] = np.nan
    # set missing values where data have non acceptable values
509 510
    res = np.asarray([np.where((spd < 0) | (q10n < 0), np.nan,
                               res[i][:]) for i in range(39)])
511 512 513
    # output with pandas
    resAll = pd.DataFrame(data=res.T, index=range(len(spd)),
                        columns=["tau", "shf", "lhf", "L", "cd", "cdn", "ct",
514 515 516 517 518 519
                                 "ctn", "cq", "cqn", "tsrv", "tsr", "qsr",
                                 "usr", "psim", "psit","psiq", "u10n", "t10n",
                                 "tv10n", "q10n", "zo", "zot", "zoq", "uref",
                                 "tref", "qref", "iteration", "dter", "dqer",
                                 "dtwl", "qair", "qsea", "Rl", "Rs", "Rnl",
                                 "ug", "Rib", "rh"])
520 521 522
    resAll["flag"] = flag
    return resAll