flux_subs.py 19.7 KB
Newer Older
sbiri's avatar
sbiri committed
1 2 3 4 5 6
import numpy as np

""" Conversion factor for [:math:`^\\circ` C] to [:math:`^\\circ` K] """
CtoK = 273.16  # 273.15
""" von Karman's constant """
kappa = 0.4  # NOTE: 0.41
sbiri's avatar
sbiri committed
7
# ---------------------------------------------------------------------
sbiri's avatar
sbiri committed
8

sbiri's avatar
sbiri committed
9 10 11 12 13 14 15 16 17 18 19 20

def charnock_C35(wind, u10n, usr, seastate, waveage, wcp, sigH, lat):
    g = gc(lat, None)
    a1, a2 = 0.0017, -0.0050
    charnC = np.where(u10n > 19, a1*19+a2, a1*u10n+a2)
    A, B = 0.114, 0.622  # wave-age dependent coefficients
    Ad, Bd = 0.091, 2.0  # Sea-state/wave-age dependent coefficients
    charnW = A*(usr/wcp)**B
    zoS = sigH*Ad*(usr/wcp)**Bd
    charnS = (zoS*g)/usr**2
    charn = np.where(wind > 10, 0.011+(wind-10)/(18-10)*(0.018-0.011),
                     np.where(wind > 18, 0.018, 0.011*np.ones(np.shape(wind))))
sbiri's avatar
sbiri committed
21 22
    if waveage:
        if seastate:
sbiri's avatar
sbiri committed
23
            charn = charnS
sbiri's avatar
sbiri committed
24
        else:
sbiri's avatar
sbiri committed
25
            charn = charnW
sbiri's avatar
sbiri committed
26
    else:
sbiri's avatar
sbiri committed
27 28 29 30 31
        charn = charnC
    ac = np.zeros((len(wind), 3))
    ac[:, 0] = charn
    ac[:, 1] = charnS
    ac[:, 2] = charnW
sbiri's avatar
sbiri committed
32
    return ac
sbiri's avatar
sbiri committed
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
# ---------------------------------------------------------------------


def cd_C35(u10n, wind, usr, charn, monob, Ta, hh_in, lat):
    g = gc(lat, None)
    zo = charn*usr**2/g+0.11*visc_air(Ta)/usr  # surface roughness
    rr = zo*usr/visc_air(Ta)
    # These thermal roughness lengths give Stanton and
    zoq = np.where(5.8e-5/rr**0.72 > 1.6e-4, 1.6e-4, 5.8e-5/rr**0.72)
    zot = zoq  # Dalton numbers that closely approximate COARE 3.0
    cdhf = kappa/(np.log(hh_in[0]/zo)-psiu_26(hh_in[0]/monob))
    cthf = kappa/(np.log(hh_in[1]/zot)-psit_26(hh_in[1]/monob))
    cqhf = kappa/(np.log(hh_in[2]/zoq)-psit_26(hh_in[2]/monob))
    return zo, cdhf, cthf, cqhf
# ---------------------------------------------------------------------


def cdn_calc(u10n, Ta, Tp, method="Smith80"):
sbiri's avatar
sbiri committed
51
    if (method == "Smith80"):
sbiri's avatar
sbiri committed
52 53
        cdn = np.where(u10n <= 3, (0.61+0.567/u10n)*0.001,
                       (0.61+0.063*u10n)*0.001)
sbiri's avatar
sbiri committed
54
    elif (method == "LP82"):
sbiri's avatar
sbiri committed
55 56 57 58 59 60
        cdn = np.where((u10n < 11) & (u10n >= 4), 1.2*0.001,
                       np.where((u10n <= 25) & (u10n >= 11),
                       (0.49+0.065*u10n)*0.001, 1.14*0.001))
    elif (method == "Smith88" or method == "COARE3.0" or
          method == "COARE4.0" or method == "UA" or method == "ERA5"):
        cdn = cdn_from_roughness(u10n, Ta, None, method)
sbiri's avatar
sbiri committed
61
    elif (method == "HEXOS"):
sbiri's avatar
sbiri committed
62 63
        # Smith et al. 1991 #(0.27 + 0.116*u10n)*0.001  Smith et al. 1992
        cdn = (0.5+0.091*u10n)*0.001
sbiri's avatar
sbiri committed
64
    elif (method == "HEXOSwave"):
sbiri's avatar
sbiri committed
65 66 67 68 69 70 71
        cdn = cdn_from_roughness(u10n, Ta, Tp, method)
    elif (method == "YT96"):
        # for u<3 same as Smith80
        cdn = np.where((u10n < 6) & (u10n >= 3),
                       (0.29+3.1/u10n+7.7/u10n**2)*0.001,
                       np.where((u10n <= 26) & (u10n >= 6),
                       (0.60 + 0.070*u10n)*0.001, (0.61+0.567/u10n)*0.001))
sbiri's avatar
sbiri committed
72
    elif (method == "LY04"):
sbiri's avatar
sbiri committed
73 74
        cdn = np.where(u10n >= 0.5,
                       (0.142+(2.7/u10n)+(u10n/13.09))*0.001, np.nan)
sbiri's avatar
sbiri committed
75 76 77
    else:
        print("unknown method cdn: "+method)
    return cdn
sbiri's avatar
sbiri committed
78 79 80 81 82 83 84 85
# ---------------------------------------------------------------------


def cdn_from_roughness(u10n, Ta, Tp, method="Smith88"):
    g, tol = 9.812, 0.000001
    cdn, usr = np.zeros(Ta.shape), np.zeros(Ta.shape)
    cdnn = (0.61+0.063*u10n)*0.001
    zo, zc, zs = np.zeros(Ta.shape), np.zeros(Ta.shape), np.zeros(Ta.shape)
sbiri's avatar
sbiri committed
86 87
    for it in range(5):
        cdn = np.copy(cdnn)
sbiri's avatar
sbiri committed
88
        usr = np.sqrt(cdn*u10n**2)
sbiri's avatar
sbiri committed
89
        if (method == "Smith88"):
sbiri's avatar
sbiri committed
90 91 92 93 94
            # .....Charnock roughness length (equn 4 in Smith 88)
            zc = 0.011*np.power(usr, 2)/g
            # .....smooth surface roughness length (equn 6 in Smith 88)
            zs = 0.11*visc_air(Ta)/usr
            zo = zc + zs  # .....equns 7 & 8 in Smith 88 to calculate new CDN
sbiri's avatar
sbiri committed
95 96
        elif (method == "COARE3.0"):
            zc = 0.011 + (u10n-10)/(18-10)*(0.018-0.011)
sbiri's avatar
sbiri committed
97 98 99
            zc = np.where(u10n < 10, 0.011, np.where(u10n > 18, 0.018, zc))
            zs = 0.11*visc_air(Ta)/usr
            zo = zc*np.power(usr, 2)/g + zs
sbiri's avatar
sbiri committed
100
        elif (method == "HEXOSwave"):
sbiri's avatar
sbiri committed
101 102 103 104 105 106 107 108 109 110
            if ((Tp is None) or np.nansum(Tp) == 0):
                Tp = 0.729*u10n  # Taylor and Yelland 2001
            cp_wave = g*Tp/2/np.pi  # use input wave period
            zo = 0.48*np.power(usr, 3)/g/cp_wave  # Smith et al. 1992
        elif (method == "UA"):
            # valid for 0<u<18m/s # Zeng et al. 1998 (24)
            zo = 0.013*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr
        elif (method == "ERA5"):
            # eq. (3.26) p.40 over sea IFS Documentation cy46r1
            zo = 0.11*visc_air(Ta)/usr+0.018*np.power(usr, 2)/g
sbiri's avatar
sbiri committed
111
        else:
sbiri's avatar
sbiri committed
112
            print("unknown method for cdn_from_roughness "+method)
sbiri's avatar
sbiri committed
113
        cdnn = (kappa/np.log(10/zo))**2
sbiri's avatar
sbiri committed
114
    cdn = np.where(np.abs(cdnn-cdn) < tol, cdnn, np.nan)
sbiri's avatar
sbiri committed
115
    return cdnn
sbiri's avatar
sbiri committed
116
# ---------------------------------------------------------------------
sbiri's avatar
sbiri committed
117

sbiri's avatar
sbiri committed
118 119

def ctcqn_calc(zol, cdn, u10n, zo, Ta, method="Smith80"):
sbiri's avatar
sbiri committed
120
    if (method == "Smith80" or method == "Smith88" or method == "YT96"):
sbiri's avatar
sbiri committed
121 122
        cqn = np.ones(Ta.shape)*1.20*0.001  # from Smith88
        ctn = np.ones(Ta.shape)*1.00*0.001
sbiri's avatar
sbiri committed
123
    elif (method == "LP82"):
sbiri's avatar
sbiri committed
124 125 126 127
        cqn = np.where((zol <= 0) & (u10n > 4) & (u10n < 14), 1.15*0.001,
                       np.nan)
        ctn = np.where((zol <= 0) & (u10n > 4) & (u10n < 25), 1.13*0.001,
                       0.66*0.001)
sbiri's avatar
sbiri committed
128
    elif (method == "HEXOS" or method == "HEXOSwave"):
sbiri's avatar
sbiri committed
129 130
        cqn = np.where((u10n <= 23) & (u10n >= 3), 1.1*0.001, np.nan)
        ctn = np.where((u10n <= 18) & (u10n >= 3), 1.1*0.001, np.nan)
sbiri's avatar
sbiri committed
131
    elif (method == "COARE3.0" or method == "COARE4.0"):
sbiri's avatar
sbiri committed
132 133
        usr = (cdn*u10n**2)**0.5
        rr = zo*usr/visc_air(Ta)
sbiri's avatar
sbiri committed
134
        zoq = 5.5e-5/rr**0.6
sbiri's avatar
sbiri committed
135
        zoq[zoq > 1.15e-4] = 1.15e-4
sbiri's avatar
sbiri committed
136 137 138 139 140 141
        zot = zoq
        cqn = kappa**2/np.log(10/zo)/np.log(10/zoq)
        ctn = kappa**2/np.log(10/zo)/np.log(10/zot)
    elif (method == "LY04"):
        cqn = 34.6*0.001*cdn**0.5
        ctn = np.where(zol <= 0, 32.7*0.001*cdn**0.5, 18*0.001*cdn**0.5)
sbiri's avatar
sbiri committed
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    elif (method == "UA"):
        usr = (cdn * u10n**2)**0.5
        # Zeng et al. 1998 (25)
        zoq = zo*np.exp(-(2.67*np.power(usr*zo/visc_air(Ta), 1/4)-2.57))
        zot = zoq
        cqn = np.where((u10n > 0.5) & (u10n < 18), np.power(kappa, 2) /
                       (np.log(10/zo)*np.log(10/zoq)), np.nan)
        ctn = np.where((u10n > 0.5) & (u10n < 18), np.power(kappa, 2) /
                       (np.log(10/zo)*np.log(10/zoq)), np.nan)
    elif (method == "ERA5"):
        # eq. (3.26) p.40 over sea IFS Documentation cy46r1
        usr = np.sqrt(cdn*np.power(u10n, 2))
        zot = 0.40*visc_air(Ta)/usr
        zoq = 0.62*visc_air(Ta)/usr
        cqn = kappa**2/np.log(10/zo)/np.log(10/zoq)
        ctn = kappa**2/np.log(10/zo)/np.log(10/zot)
sbiri's avatar
sbiri committed
158 159 160
    else:
        print("unknown method ctcqn: "+method)
    return ctn, cqn
sbiri's avatar
sbiri committed
161 162 163
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
164
def cd_calc(cdn, height, ref_ht, psim):
sbiri's avatar
sbiri committed
165 166
    cd = (cdn*np.power(1+np.sqrt(cdn)*np.power(kappa, -1) *
          (np.log(height/ref_ht)-psim), -2))
sbiri's avatar
sbiri committed
167
    return cd
sbiri's avatar
sbiri committed
168 169 170
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
171 172 173 174
def ctcq_calc(cdn, cd, ctn, cqn, h_t, h_q, ref_ht, psit, psiq):
    ct = ctn*(cd/cdn)**0.5/(1+ctn*((np.log(h_t/ref_ht)-psit)/(kappa*cdn**0.5)))
    cq = cqn*(cd/cdn)**0.5/(1+cqn*((np.log(h_q/ref_ht)-psiq)/(kappa*cdn**0.5)))
    return ct, cq
sbiri's avatar
sbiri committed
175 176 177 178
# ---------------------------------------------------------------------


def psim_calc(zol, method="Smith80"):
sbiri's avatar
sbiri committed
179 180 181
    coeffs = get_stabco(method)
    alpha, beta, gamma = coeffs[0], coeffs[1], coeffs[2]
    if (method == "COARE3.0" or method == "COARE4.0"):
sbiri's avatar
sbiri committed
182 183 184 185 186
        psim = np.where(zol < 0, psim_conv_coare3(zol, alpha, beta, gamma),
                        psim_stab_coare3(zol, alpha, beta, gamma))
    elif (method == "ERA5"):
        psim = np.where(zol < 0, psim_conv(zol, alpha, beta, gamma),
                        psim_stab_era5(zol, alpha, beta, gamma))
sbiri's avatar
sbiri committed
187
    else:
sbiri's avatar
sbiri committed
188 189
        psim = np.where(zol < 0, psim_conv(zol, alpha, beta, gamma),
                        psim_stab(zol, alpha, beta, gamma))
sbiri's avatar
sbiri committed
190
    return psim
sbiri's avatar
sbiri committed
191 192 193
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
194 195 196 197
def psit_calc(zol, method="Smith80"):
    coeffs = get_stabco(method)
    alpha, beta, gamma = coeffs[0], coeffs[1], coeffs[2]
    if (method == "COARE3.0" or method == "COARE4.0"):
sbiri's avatar
sbiri committed
198 199 200 201 202
        psit = np.where(zol < 0, psi_conv_coare3(zol, alpha, beta, gamma),
                        psi_stab_coare3(zol, alpha, beta, gamma))
    elif (method == "ERA5"):
        psit = np.where(zol < 0, psi_conv(zol, alpha, beta, gamma),
                        psi_stab_era5(zol, alpha, beta, gamma))
sbiri's avatar
sbiri committed
203
    else:
sbiri's avatar
sbiri committed
204 205
        psit = np.where(zol < 0, psi_conv(zol, alpha, beta, gamma),
                        psi_stab(zol, alpha, beta, gamma))
sbiri's avatar
sbiri committed
206
    return psit
sbiri's avatar
sbiri committed
207 208 209
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
210
def get_stabco(method="Smith80"):
sbiri's avatar
sbiri committed
211 212 213
    if (method == "Smith80" or method == "Smith88" or method == "LY04" or
            method == "UA" or method == "ERA5"):
        alpha, beta, gamma = 16, 0.25, 5  # Smith 1980, from Dyer (1974)
sbiri's avatar
sbiri committed
214
    elif (method == "LP82"):
sbiri's avatar
sbiri committed
215
        alpha, beta, gamma = 16, 0.25, 7
sbiri's avatar
sbiri committed
216 217 218 219 220 221 222 223
    elif (method == "HEXOS" or method == "HEXOSwave"):
        alpha, beta, gamma = 16, 0.25, 8
    elif (method == "YT96"):
        alpha, beta, gamma = 20, 0.25, 5
    elif (method == "COARE3.0" or method == "COARE4.0"):
        # use separate subroutine
        alpha, beta, gamma = 15, 1/3, 5   # not sure about gamma=34.15
    else:
sbiri's avatar
sbiri committed
224
        print("unknown method stabco: "+method)
sbiri's avatar
sbiri committed
225 226 227 228 229
    coeffs = np.zeros(3)
    coeffs[0] = alpha
    coeffs[1] = beta
    coeffs[2] = gamma
    return coeffs
sbiri's avatar
sbiri committed
230 231 232 233 234
# ---------------------------------------------------------------------


def psi_conv_coare3(zol, alpha, beta, gamma):
    x = (1-alpha*zol)**0.5  # Kansas unstable
sbiri's avatar
sbiri committed
235 236
    psik = 2*np.log((1+x)/2.)
    y = (1-34.15*zol)**beta
sbiri's avatar
sbiri committed
237 238
    psic = (1.5*np.log((1+y+y*y)/3.)-(3)**0.5*np.arctan((1+2*y)/(3)**0.5) +
            4*np.arctan(1)/(3)**0.5)
sbiri's avatar
sbiri committed
239
    f = zol*zol/(1.+zol*zol)
sbiri's avatar
sbiri committed
240 241 242 243 244 245 246 247
    psit = (1-f)*psik+f*psic
    return psit
# ---------------------------------------------------------------------


def psi_stab_coare3(zol, alpha, beta, gamma):  # Stable
    c = np.where(0.35*zol > 50, 50, 0.35*zol)  # Stable
    psit = -((1+2*zol/3)**1.5+0.6667*(zol-14.28)/np.exp(c)+8.525)
sbiri's avatar
sbiri committed
248
    return psit
sbiri's avatar
sbiri committed
249 250 251 252 253 254 255
# ---------------------------------------------------------------------


def psi_stab_era5(zol, alpha, beta, gamma):
    # eq (3.22) p. 39 IFS Documentation cy46r1
    a, b, c, d = 1, 2/3, 5, 0.35
    psit = -b*(zol-c/d)*np.exp(-d*zol)-np.power(1+(2/3)*a*zol, 1.5)-(b*c)/d+1
sbiri's avatar
sbiri committed
256
    return psit
sbiri's avatar
sbiri committed
257 258 259 260 261
# ---------------------------------------------------------------------

def psi_conv(zol, alpha, beta, gamma):
    xtmp = (1-alpha*zol)**beta
    psit = 2*np.log((1+xtmp**2)*0.5)
sbiri's avatar
sbiri committed
262
    return psit
sbiri's avatar
sbiri committed
263 264 265 266 267
# ---------------------------------------------------------------------


def psi_stab(zol, alpha, beta, gamma):
    psit = -gamma*zol
sbiri's avatar
sbiri committed
268
    return psit
sbiri's avatar
sbiri committed
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
# ---------------------------------------------------------------------


def psit_26(zet):
    """
    computes temperature structure function as in COARE3.5
    """
    dzet = np.where(0.35*zet > 50, 50, 0.35*zet)  # stable
    psi = -((1+0.6667*zet)**1.5+0.6667*(zet-14.28)*np.exp(-dzet)+8.525)
    k = np.where(zet < 0)  # unstable
    x = (1-15*zet[k])**0.5
    psik = 2*np.log((1+x)/2)
    x = (1-34.15*zet[k])**0.3333
    psic = (1.5*np.log((1+x+x**2)/3)-np.sqrt(3)*np.arctan((1+2*x) /
            np.sqrt(3))+4*np.arctan(1)/np.sqrt(3))
    f = zet[k]**2/(1+zet[k]**2)
    psi[k] = (1-f)*psik+f*psic
    return psi
# ---------------------------------------------------------------------


def psim_conv_coare3(zol, alpha, beta, gamma):
    x = (1-15*zol)**0.25  # Kansas unstable
sbiri's avatar
sbiri committed
292
    psik = 2*np.log((1+x)/2)+np.log((1+x*x)/2)-2*np.arctan(x)+2*np.arctan(1)
sbiri's avatar
sbiri committed
293 294 295
    y = (1-10.15*zol)**0.3333  # Convective
    psic = (1.5*np.log((1+y+y*y)/3.)-np.sqrt(3)*np.arctan((1+2*y)/np.sqrt(3)) +
            4.*np.arctan(1)/np.sqrt(3))
sbiri's avatar
sbiri committed
296 297 298
    f = zol*zol/(1+zol*zol)
    psim = (1-f)*psik+f*psic
    return psim
sbiri's avatar
sbiri committed
299 300 301 302 303
# ---------------------------------------------------------------------


def psim_stab_coare3(zol, alpha, beta, gamma):
    c = np.where(0.35*zol > 50, 50, 0.35*zol)  # Stable
sbiri's avatar
sbiri committed
304 305
    psim = -((1+1*zol)**1.0+0.6667*(zol-14.28)/np.exp(-c)+8.525)
    return psim
sbiri's avatar
sbiri committed
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
# ---------------------------------------------------------------------


def psim_stab_era5(zol, alpha, beta, gamma):
    # eq (3.22) p. 39 IFS Documentation cy46r1
    a, b, c, d = 1, 2/3, 5, 0.35
    psim = -b*(zol-c/d)*np.exp(-d*zol)-a*zol-(b*c)/d
    return psim
# ---------------------------------------------------------------------


def psim_conv(zol, alpha, beta, gamma):
    xtmp = (1-alpha*zol)**beta
    psim = (2*np.log((1+xtmp)*0.5)+np.log((1+xtmp**2)*0.5) -
            2*np.arctan(xtmp)+np.pi/2)
sbiri's avatar
sbiri committed
321
    return psim
sbiri's avatar
sbiri committed
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
# ---------------------------------------------------------------------


def psim_stab(zol, alpha, beta, gamma):
    psim = -gamma*zol
    return psim
# ---------------------------------------------------------------------


def psiu_26(zet):
    """
    computes velocity structure function COARE3.5
    """
    dzet = np.where(0.35*zet > 50, 50, 0.35*zet)  # stable
    a, b, c, d = 0.7, 3/4, 5, 0.35
    psi = -(a*zet+b*(zet-c/d)*np.exp(-dzet)+b*c/d)
    k = np.where(zet < 0)  # unstable
    x = (1-15*zet[k])**0.25
    psik = 2*np.log((1+x)/2)+np.log((1+x**2)/2)-2*np.arctan(x)+2*np.arctan(1)
    x = (1-10.15*zet[k])**0.3333
    psic = (1.5*np.log((1+x+x**2)/3)-np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3)) +
            4*np.arctan(1)/np.sqrt(3))
    f = zet[k]**2/(1+zet[k]**2)
    psi[k] = (1-f)*psik+f*psic
    return psi
# ------------------------------------------------------------------------------


def psiu_40(zet):
    """
    computes velocity structure function COARE3.5
    """
    dzet = np.where(0.35*zet > 50, 50, 0.35*zet)  # stable
    a, b, c, d = 1, 3/4, 5, 0.35
    psi = -(a*zet+b*(zet-c/d)*np.exp(-dzet)+b*c/d)
    k = np.where(zet < 0)  # unstable
    x = (1-18*zet[k])**0.25
    psik = 2*np.log((1+x)/2)+np.log((1+x**2)/2)-2*np.arctan(x)+2*np.arctan(1)
    x = (1-10*zet[k])**0.3333
    psic = (1.5*np.log((1+x+x**2)/3)-np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3)) +
            4*np.arctan(1)/np.sqrt(3))
    f = zet[k]**2/(1+zet[k]**2)
    psi[k] = (1-f)*psik+f*psic
    return psi
# ---------------------------------------------------------------------


def get_skin(sst, qsea, rho, jcool, Rl, Rs, Rnl, cp, lv, usr, tsr, qsr, lat):
    # coded following Saunders (1967) with lambda = 6
    g = gc(lat, None)
    if (np.nanmin(sst) > 200):  # if Ta in Kelvin convert to Celsius
sbiri's avatar
sbiri committed
373
        sst = sst-273.16
sbiri's avatar
sbiri committed
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    # ************  cool skin constants  *******
    # density of water, specific heat capacity of water, water viscosity,
    # thermal conductivity of water
    rhow, cpw, visw, tcw = 1022, 4000, 1e-6, 0.6
    Al = 2.1e-5*(sst+3.2)**0.79
    be = 0.026
    bigc = 16*g*cpw*(rhow*visw)**3/(tcw*tcw*rho*rho)
    wetc = 0.622*lv*qsea/(287.1*(sst+273.16)**2)
    Rns = 0.945*Rs  # albedo correction
    hsb = -rho*cp*usr*tsr
    hlb = -rho*lv*usr*qsr
    qout = Rnl+hsb+hlb
    tkt = 0.001*np.ones(np.shape(sst))
    dels = Rns*(0.065+11*tkt-6.6e-5/tkt*(1-np.exp(-tkt/8.0e-4)))
    qcol = qout-dels
    alq = Al*qcol+be*hlb*cpw/lv
    xlamx = np.where(alq > 0, 6/(1+(bigc*alq/usr**4)**0.75)**0.333, 6)
    tkt = xlamx*visw/(np.sqrt(rho/rhow)*usr)
    tkt = np.where(alq > 0, np.where(tkt > 0.01, 0.01, tkt), tkt)
    dter = qcol*tkt/tcw
    dqer = wetc*dter
    return dter, dqer
# ---------------------------------------------------------------------


def get_gust(beta, Ta, usr, tsrv, zi, lat):
    if (np.max(Ta) < 200):  # convert to K if in Celsius
        Ta = Ta+273.16
    if np.isnan(zi):
        zi = 600
    g = gc(lat, None)
    Bf = -g/Ta*usr*tsrv
    ug = np.ones(np.shape(Ta))*0.2
    ug = np.where(Bf > 0, beta*np.power(Bf*zi, 1/3), 0.2)
    return ug
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
412
def get_heights(h):
sbiri's avatar
sbiri committed
413 414 415 416 417
    hh = np.zeros(3)
    if (type(h) == float or type(h) == int):
        hh[0], hh[1], hh[2] = h, h, h
    elif len(h) == 2:
        hh[0], hh[1], hh[2] = h[0], h[1], h[1]
sbiri's avatar
sbiri committed
418
    else:
sbiri's avatar
sbiri committed
419
        hh[0], hh[1], hh[2] = h[0], h[1], h[2]
sbiri's avatar
sbiri committed
420
    return hh
sbiri's avatar
sbiri committed
421 422 423
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
424
def svp_calc(T):
sbiri's avatar
sbiri committed
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
    """
    calculates saturation vapour pressure
    T is in Kelvin
    svp in mb, pure water
    """
    if (np.nanmin(T) < 200):  # if T in Celsius convert to Kelvin
        T = T+273.16
    svp = np.where(np.isnan(T), np.nan, 2.1718e08*np.exp(-4157/(T-33.91-0.16)))
    return svp
# ---------------------------------------------------------------------


def qsea_calc(sst, pres):
    """
    sst in Kelvin
    pres in mb
    qsea in kg/kg
    """
    if (np.nanmin(sst) < 200):  # if sst in Celsius convert to Kelvin
sbiri's avatar
sbiri committed
444
        sst = sst+273.16
sbiri's avatar
sbiri committed
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    ed = svp_calc(sst)
    e = 0.98*ed
    qsea = (0.622*e)/(pres-0.378*e)
    qsea = np.where(~np.isnan(sst+pres), qsea, np.nan)
    return qsea
# ---------------------------------------------------------------------


def q_calc(Ta, rh, pres):
    """
    rh in %
    air in K, if not it will be converted to K
    pres in mb
    qair in kg/kg, as in Haltiner and Martin p.24
    """
    if (np.nanmin(Ta) < 200):  # if sst in Celsius convert to Kelvin
        Ta = Ta+273.15
    e = np.where(np.isnan(Ta+rh+pres), np.nan, svp_calc(Ta)*rh*0.01)
    qair = np.where(np.isnan(e), np.nan, ((0.62197*e)/(pres-0.378*e)))
    return qair
# ------------------------------------------------------------------------------


def bucksat(T, P):
    """
    computes saturation vapor pressure [mb] as in COARE3.5
    given T [degC] and P [mb]
    """
    T = np.asarray(T)
    if (np.nanmin(T) > 200):  # if Ta in Kelvin convert to Celsius
        T = T-CtoK
    exx = 6.1121*np.exp(17.502*T/(T+240.97))*(1.0007+3.46e-6*P)
    return exx
# ------------------------------------------------------------------------------


def qsat26sea(T, P):
    """
    computes surface saturation specific humidity [g/kg] as in COARE3.5
    given T [degC] and P [mb]
    """
    T = np.asarray(T)
    if (np.nanmin(T) > 200):  # if Ta in Kelvin convert to Celsius
        T = T-CtoK
    ex = bucksat(T, P)
    es = 0.98*ex  # reduction at sea surface
    qs = 622*es/(P-0.378*es)
    return qs
# ------------------------------------------------------------------------------


def qsat26air(T, P, rh):
    """
    computes saturation specific humidity [g/kg] as in COARE3.5
    given T [degC] and P [mb]
    """
    T = np.asarray(T)
    if (np.nanmin(T) > 200):  # if Ta in Kelvin convert to Celsius
        T = T-CtoK
    es = bucksat(T, P)
    em = 0.01*rh*es
    q = 622*em/(P-0.378*em)
    return q, em
# ---------------------------------------------------------------------


def gc(lat, lon=None):
sbiri's avatar
sbiri committed
512 513 514 515 516 517 518 519 520 521 522 523 524 525
    """
    computes gravity relative to latitude
    inputs:
        lat : latitudes in deg
        lon : longitudes (optional)
    output:
        gc: gravity constant
    """
    gamma = 9.7803267715
    c1 = 0.0052790414
    c2 = 0.0000232718
    c3 = 0.0000001262
    c4 = 0.0000000007
    if lon is not None:
sbiri's avatar
sbiri committed
526
        lon_m, lat_m = np.meshgrid(lon, lat)
sbiri's avatar
sbiri committed
527 528 529 530
    else:
        lat_m = lat
    phi = lat_m*np.pi/180.
    xx = np.sin(phi)
sbiri's avatar
sbiri committed
531 532
    gc = (gamma*(1+c1*np.power(xx, 2)+c2*np.power(xx, 4)+c3*np.power(xx, 6) +
          c4*np.power(xx, 8)))
sbiri's avatar
sbiri committed
533
    return gc
sbiri's avatar
sbiri committed
534 535 536
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
537 538
def visc_air(Ta):
    """
sbiri's avatar
sbiri committed
539
    Computes the kinematic viscosity of dry air as a function of air temp.
sbiri's avatar
sbiri committed
540 541 542 543 544 545 546
    following Andreas (1989), CRREL Report 89-11.
    input:
        Ta : air temperature [Celsius]
    output
    visa : kinematic viscosity [m^2/s]
    """
    Ta = np.asarray(Ta)
sbiri's avatar
sbiri committed
547
    if (np.nanmin(Ta) > 200):  # if Ta in Kelvin convert to Celsius
sbiri's avatar
sbiri committed
548 549 550
        Ta = Ta-273.16
    visa = 1.326e-5 * (1 + 6.542e-3*Ta + 8.301e-6*Ta**2 - 4.84e-9*Ta**3)
    return visa