nemo_bdy_extr_tm3.py 40 KB
Newer Older
James Harle's avatar
James Harle committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# ===================================================================
# The contents of this file are dedicated to the public domain.  To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================

'''
Created on Wed Sep 12 08:02:46 2012

This Module defines the extraction of the data from the source grid and does 
the interpolation onto the destination grid. 

@author James Harle
@author John Kazimierz Farey
@author: Mr. Srikanth Nagella
$Last commit on:$
'''

# pylint: disable=E1103
# pylint: disable=no-name-in-module

# External Imports
import copy
import logging
import numpy as np
import scipy.spatial as sp
from calendar import monthrange, isleap
from scipy.interpolate import interp1d
James Harle's avatar
James Harle committed
41
from cftime import datetime, utime
James Harle's avatar
James Harle committed
42 43 44 45
from pynemo import nemo_bdy_ncgen as ncgen
from pynemo import nemo_bdy_ncpop as ncpop

# Local Imports
James Harle's avatar
James Harle committed
46
from . import nemo_bdy_grid_angle as ga
James Harle's avatar
James Harle committed
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
from pynemo.reader.factory import GetFile
from pynemo.utils.nemo_bdy_lib import rot_rep, sub2ind

#TODO: Convert the 'F' ordering to 'C' to improve efficiency 
class Extract:

    def __init__(self, setup, SourceCoord, DstCoord, Grid, var_nam, grd, pair):
        """ 
        Initialises the Extract object.

        Parent grid to child grid weights are defined along with rotation
        weightings for vector quantities.

        Args:
            setup           (list) : settings for bdy
            SourceCoord     (obj)  : source grid information
            DstCoord        (obj)  : destination grid information
            Grid            (dict) : containing grid type 't', 'u', 'v'
                                     and source time
            var_name        (list) : netcdf file variable names (str)
            years           (list) : years to extract (default [1979])
            months          (list) : months to extract (default [11])                      
        
        Returns:
        """

        self.logger = logging.getLogger(__name__)
        self.g_type = grd
        self.settings = setup
        self.key_vec = False
thopri's avatar
thopri committed
77 78 79 80 81 82 83 84
        self.t_mask = None
        self.u_mask = None
        self.v_mask = None
        self.dist_wei = None
        self.dist_fac = None
        self.tmp_valid = None
        self.data_ind = None
        self.nan_ind = None
James Harle's avatar
James Harle committed
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        
        # TODO: Why are we deepcopying the coordinates???
        
        SC = copy.deepcopy(SourceCoord)
        DC = copy.deepcopy(DstCoord)
        bdy_r = copy.deepcopy(Grid[grd].bdy_r)
        
        # Extract time and variable information
        
        sc_time = Grid[grd].source_time
        self.var_nam = var_nam
        sc_z = SC.zt[:]
        sc_z_len = len(sc_z)
        
        
        self.jpj, self.jpi = DC.lonlat[grd]['lon'].shape
        self.jpk = DC.depths[grd]['bdy_z'].shape[0]
        # Set some constants
        
        # Make function of dst grid resolution (used in 1-2-1 weighting)
        # if the weighting can only find one addtional point this implies an 
        # point so fill the third point with itself as not to bias too much
        
        fr = 0.1

        # Set up any rotation that is required
        
        if pair == 'uv':
            if grd == 'u':
                self.rot_dir = 'i'
                self.key_vec = True
                self.fnames_2 = Grid['v'].source_time
            elif grd == 'v':
                self.rot_dir = 'j'
                self.key_vec = True
                self.fnames_2 = Grid['v'].source_time
            else:
                raise ValueError('Invalid rotation grid grid_type: %s' %grd)

        # 
        
        
        dst_lon = DC.bdy_lonlat[self.g_type]['lon']
        dst_lat = DC.bdy_lonlat[self.g_type]['lat']
        try:
            dst_dep = DC.depths[self.g_type]['bdy_z']
        except KeyError:
            dst_dep = np.zeros([1])
        self.isslab = len(dst_dep) == 1
        if dst_dep.size == len(dst_dep):
            dst_dep = np.ones([1, len(dst_lon)])

        # ??? Should this be read from settings?
        wei_121 = np.array([0.5, 0.25, 0.25])

        SC.lon = SC.lon.squeeze()
        SC.lat = SC.lat.squeeze()

        

        # Check that we're only dealing with one pair of vectors

        num_bdy = len(dst_lon)
        self.nvar = len(self.var_nam)
        
        
        if self.key_vec:
            self.nvar = self.nvar / 2
            if self.nvar != 1:
                self.logger.error('Code not written yet to handle more than\
                                   one pair of rotated vectors')

        self.logger.info('Extract __init__: variables to process')
        self.logger.info('nvar: %s', self.nvar)
        self.logger.info('key vec: %s', self.key_vec)

        # Find subset of source data set required to produce bdy points

        ind_e  = SC.lon < np.amax(dst_lon); ind_w  = SC.lon > np.amin(dst_lon)
        ind_ew = np.logical_and(ind_e, ind_w)
        ind_s  = SC.lat > np.amin(dst_lat); ind_n  = SC.lat < np.amax(dst_lat)
        ind_sn = np.logical_and(ind_s, ind_n)

        ind    = np.where(np.logical_and(ind_ew, ind_sn) != 0)
        ind_s  = np.argsort(ind[1])

        sub_j  = ind[0][ind_s]
        sub_i  = ind[1][ind_s]
        
        # Find I/J range
        
        imin = np.maximum(np.amin(sub_i) - 2, 0)
        imax = np.minimum(np.amax(sub_i) + 2, len(SC.lon[0, :]) - 1) + 1
        jmin = np.maximum(np.amin(sub_j) - 2, 0)
        jmax = np.minimum(np.amax(sub_j) + 2, len(SC.lon[:, 0]) - 1) + 1

        # Summarise subset region
        
        self.logger.info('Extract __init__: subset region limits')
        self.logger.info(' \n imin: %d\n imax: %d\n jmin: %d\n jmax: %d\n', 
                          imin, imax, jmin, jmax)
        
        # Reduce the source coordinates to the sub region identified
        
        SC.lon = SC.lon[jmin:jmax, imin:imax]
        SC.lat = SC.lat[jmin:jmax, imin:imax]

        # Initialise gsin* and gcos* for rotation of vectors
        
        if self.key_vec:
             
            bdy_ind = Grid[grd].bdy_i
            
            maxI = DC.lonlat['t']['lon'].shape[1]
            maxJ = DC.lonlat['t']['lon'].shape[0]
            dst_gcos = np.ones([maxJ, maxI])
            dst_gsin = np.zeros([maxJ, maxI])
            
            # TODO: allow B-Grid Extraction
            
            # Extract the source rotation angles on the T-Points as the C-Grid 
            # U/V points naturally average onto these
            
            src_ga = ga.GridAngle(self.settings['src_hgr'], imin,
                                                         imax, jmin, jmax, 't')
            
            # Extract the rotation angles for the bdy velocities points
            
            dst_ga = ga.GridAngle(self.settings['dst_hgr'], 1,
                                                   maxI, 1, maxJ, grd)

            self.gcos = src_ga.cosval
            self.gsin = src_ga.sinval
            dst_gcos[1:, 1:] = dst_ga.cosval
            dst_gsin[1:, 1:] = dst_ga.sinval
            
            # Retain only boundary points rotation information
            
            tmp_gcos = np.zeros((1, bdy_ind.shape[0]))
            tmp_gsin = np.zeros((1, bdy_ind.shape[0]))
            
            # TODO: can this be converted to an ind op rather than a loop?
            
            for p in range(bdy_ind.shape[0]):
                tmp_gcos[:, p] = dst_gcos[bdy_ind[p, 1], bdy_ind[p, 0]]
                tmp_gsin[:, p] = dst_gsin[bdy_ind[p, 1], bdy_ind[p, 0]]

            self.dst_gcos = np.tile(tmp_gcos, (sc_z_len,1))
            self.dst_gsin = np.tile(tmp_gsin, (sc_z_len,1))
            
        # Determine size of source data subset
        dst_len_z = len(dst_dep[:, 0])

        source_dims = SC.lon.shape

        # Find nearest neighbour on the source grid to each dst bdy point
        # Ann Query substitute
        source_tree = None
        try:
James Harle's avatar
James Harle committed
244 245
            source_tree = sp.cKDTree(list(zip(SC.lon.ravel(order='F'),
                                     SC.lat.ravel(order='F'))), balanced_tree=False,compact_nodes=False)
James Harle's avatar
James Harle committed
246
        except TypeError: #added this fix to make it compatible with scipy 0.16.0
James Harle's avatar
James Harle committed
247 248 249
            source_tree = sp.cKDTree(list(zip(SC.lon.ravel(order='F'),
                                     SC.lat.ravel(order='F'))))            
        dst_pts = list(zip(dst_lon[:].ravel(order='F'), dst_lat[:].ravel(order='F')))
James Harle's avatar
James Harle committed
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
        nn_dist, nn_id = source_tree.query(dst_pts, k=1)

        # Find surrounding points
        j_sp, i_sp = np.unravel_index(nn_id, source_dims, order='F')
        j_sp = np.vstack((j_sp, j_sp + 1, j_sp - 1))
        j_sp = np.vstack((j_sp, j_sp, j_sp))
        i_sp = np.vstack((i_sp, i_sp, i_sp))
        i_sp = np.vstack((i_sp, i_sp + 1, i_sp - 1))

        # Index out of bounds error check not implemented

        # Determine 9 nearest neighbours based on distance
        ind = sub2ind(source_dims, i_sp, j_sp)
        ind_rv = np.ravel(ind, order='F')
        sc_lon_rv = np.ravel(SC.lon, order='F')
        sc_lat_rv = np.ravel(SC.lat, order='F')
        sc_lon_ind = sc_lon_rv[ind_rv]

        diff_lon = sc_lon_ind - np.repeat(dst_lon, 9).T
        diff_lon = diff_lon.reshape(ind.shape, order='F')
        out = np.abs(diff_lon) > 180
        diff_lon[out] = -np.sign(diff_lon[out]) * (360 - np.abs(diff_lon[out]))

        dst_lat_rep = np.repeat(dst_lat.T, 9)
        diff_lon_rv = np.ravel(diff_lon, order='F')
        dist_merid = diff_lon_rv * np.cos(dst_lat_rep * np.pi / 180)
        dist_zonal = sc_lat_rv[ind_rv] - dst_lat_rep

thopri's avatar
thopri committed
278 279
        # TODO: would a greater circle distance function be better here?

James Harle's avatar
James Harle committed
280 281 282 283 284 285 286 287 288 289 290 291 292
        dist_tot = np.power((np.power(dist_merid, 2) +
                             np.power(dist_zonal, 2)), 0.5)
        dist_tot = dist_tot.reshape(ind.shape, order='F').T
        # Get sort inds, and sort
        dist_ind = np.argsort(dist_tot, axis=1, kind='mergesort')
        dist_tot = dist_tot[np.arange(dist_tot.shape[0])[:, None], dist_ind]

        # Shuffle ind to reflect ascending dist of source and dst points
        ind = ind.T
        for p in range(ind.shape[0]):
            ind[p, :] = ind[p, dist_ind[p, :]]

        if self.key_vec:
293 294
            self.gcos = self.gcos.flatten('F')[ind].reshape(ind.shape, order='F')
            self.gsin = self.gsin.flatten('F')[ind].reshape(ind.shape, order='F')
James Harle's avatar
James Harle committed
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

        sc_ind = {}
        sc_ind['ind'] = ind
        sc_ind['imin'], sc_ind['imax'] = imin, imax
        sc_ind['jmin'], sc_ind['jmax'] = jmin, jmax

        # Fig not implemented
        #Sri TODO::: key_vec compare to assign gcos and gsin
        # Determine 1-2-1 filter indices
        id_121 = np.zeros((num_bdy, 3), dtype=np.int64)
        for r in range(int(np.amax(bdy_r))+1):         
            r_id = bdy_r != r
            rr_id = bdy_r == r
            tmp_lon = dst_lon.copy()
            tmp_lon[r_id] = -9999
            tmp_lat = dst_lat.copy()
            tmp_lat[r_id] = -9999
            source_tree = None
            try:
James Harle's avatar
James Harle committed
314 315
                source_tree = sp.cKDTree(list(zip(tmp_lon.ravel(order='F'),
                                         tmp_lat.ravel(order='F'))), balanced_tree=False,compact_nodes=False)
James Harle's avatar
James Harle committed
316
            except TypeError: #fix for scipy 0.16.0
James Harle's avatar
James Harle committed
317 318
                source_tree = sp.cKDTree(list(zip(tmp_lon.ravel(order='F'),
                                         tmp_lat.ravel(order='F'))))
James Harle's avatar
James Harle committed
319
                
James Harle's avatar
James Harle committed
320 321
            dst_pts = list(zip(dst_lon[rr_id].ravel(order='F'),
                          dst_lat[rr_id].ravel(order='F')))
James Harle's avatar
James Harle committed
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
            junk, an_id = source_tree.query(dst_pts, k=3,
                                            distance_upper_bound=fr)
            id_121[rr_id, :] = an_id
#            id_121[id_121 == len(dst_lon)] = 0

        reptile = np.tile(id_121[:, 0], 3).reshape(id_121.shape, order='F')
        tmp_reptile = reptile * (id_121 == len(dst_lon))
        id_121[id_121 == len(dst_lon)] = 0
        tmp_reptile[tmp_reptile == len(dst_lon)] = 0
        id_121 = id_121+tmp_reptile
#        id_121 = id_121 + reptile * (id_121 == len(dst_lon))

        rep_dims = (id_121.shape[0], id_121.shape[1], sc_z_len)
        # These tran/tiles work like matlab. Tested with same Data.
        id_121 = id_121.repeat(sc_z_len).reshape(rep_dims).transpose(2, 0, 1)
        reptile = np.arange(sc_z_len).repeat(num_bdy).reshape(sc_z_len, 
                                                              num_bdy)
        reptile = reptile.repeat(3).reshape(num_bdy, 3, sc_z_len, 
                                            order='F').transpose(2, 0, 1)

        id_121 = sub2ind((sc_z_len, num_bdy), id_121, reptile)

        tmp_filt = wei_121.repeat(num_bdy).reshape(num_bdy, len(wei_121),
                                                   order='F')
        tmp_filt = tmp_filt.repeat(sc_z_len).reshape(num_bdy, len(wei_121),
                                                     sc_z_len).transpose(2, 0, 1)

        # Fig not implemented

        if self.isslab != 1: # TODO or no vertical interpolation required
            
            # Determine vertical weights for the linear interpolation 
            # onto Dst grid
            # Allocate vertical index array
            dst_dep_rv = dst_dep.ravel(order='F')
            z_ind = np.zeros((num_bdy * dst_len_z, 2), dtype=np.int64)
            source_tree = None
            try:
James Harle's avatar
James Harle committed
360
                source_tree = sp.cKDTree(list(zip(sc_z.ravel(order='F'))), balanced_tree=False,compact_nodes=False)
James Harle's avatar
James Harle committed
361
            except TypeError: #fix for scipy 0.16.0
James Harle's avatar
James Harle committed
362
                source_tree = sp.cKDTree(list(zip(sc_z.ravel(order='F'))))
James Harle's avatar
James Harle committed
363

James Harle's avatar
James Harle committed
364
            junk, nn_id = source_tree.query(list(zip(dst_dep_rv)), k=1)
James Harle's avatar
James Harle committed
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

            # WORKAROUND: the tree query returns out of range val when
            # dst_dep point is NaN, causing ref problems later.
            nn_id[nn_id == sc_z_len] = sc_z_len-1
            sc_z[nn_id]
            
            # Find next adjacent point in the vertical
            z_ind[:, 0] = nn_id
            z_ind[sc_z[nn_id] > dst_dep_rv[:], 1] = nn_id[sc_z[nn_id] >
                                                          dst_dep_rv[:]] - 1
            z_ind[sc_z[nn_id] <= dst_dep_rv[:], 1] = nn_id[sc_z[nn_id] <=
                                                           dst_dep_rv[:]] + 1
            # Adjust out of range values
            z_ind[z_ind == -1] = 0
            z_ind[z_ind == sc_z_len] = sc_z_len - 1

            # Create weightings array
            sc_z[z_ind]
            z_dist = np.abs(sc_z[z_ind] - dst_dep.T.repeat(2).reshape(len(dst_dep_rv), 2))
            rat = np.sum(z_dist, axis=1)
            z_dist = 1 - (z_dist / rat.repeat(2).reshape(len(rat), 2))

            # Update z_ind for the dst array dims and vector indexing
            # Replicating this part of matlab is difficult without causing
            # a Memory Error. This workaround may be +/- brilliant
            # In theory it maximises memory efficiency
            z_ind[:, :] += (np.arange(0, (num_bdy) * sc_z_len, sc_z_len)
                           [np.arange(num_bdy).repeat(2*dst_len_z)].reshape(z_ind.shape))
        else:
            z_ind = np.zeros([1,1])
            z_dist = np.zeros([1,1])
        # End self.isslab
        
        # Set instance attributes
        self.first = True
        self.nav_lon = DC.lonlat[grd]['lon']
        self.nav_lat = DC.lonlat[grd]['lat']
        self.z_ind = z_ind
        self.z_dist = z_dist
        self.sc_ind = sc_ind
        self.dst_dep = dst_dep
        self.num_bdy = num_bdy
        self.id_121 = id_121
        if not self.isslab:
            self.bdy_z = DC.depths[self.g_type]['bdy_H']
        else:
            self.bdy_z = np.zeros([1])
            
        self.dst_z = dst_dep
        self.sc_z_len = sc_z_len
        self.sc_time = sc_time
        self.tmp_filt = tmp_filt
        self.dist_tot = dist_tot

        self.d_bdy = {}
        for v in range(self.nvar):
            self.d_bdy[self.var_nam[v]] = {}
       
    def extract_month(self, year, month):
        """Extracts monthly data and interpolates onto the destination grid
        
        Keyword arguments:
        year -- year of data to be extracted
        month -- month of the year to be extracted
        """
        self.logger.info('extract_month function called')
        # Check year entry exists in d_bdy, if not create it.
thopri's avatar
thopri committed
432 433 434 435 436 437 438
        #for v in range(self.nvar):
        #    try:
        #        self.d_bdy[self.var_nam[v]][year]
        #    except KeyError:
        #        self.d_bdy[self.var_nam[v]][year] = {'data': None, 'date': {}}

        # flush previous months data......
James Harle's avatar
James Harle committed
439
        for v in range(self.nvar):
thopri's avatar
thopri committed
440
            self.d_bdy[self.var_nam[v]][year] = {'data': None, 'date': {}}
James Harle's avatar
James Harle committed
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
        
        i_run = np.arange(self.sc_ind['imin'], self.sc_ind['imax']) 
        j_run = np.arange(self.sc_ind['jmin'], self.sc_ind['jmax'])
        extended_i = np.arange(self.sc_ind['imin'] - 1, self.sc_ind['imax'])
        extended_j = np.arange(self.sc_ind['jmin'] - 1, self.sc_ind['jmax'])
        ind = self.sc_ind['ind']
        sc_time = self.sc_time
        sc_z_len = self.sc_z_len
        # define src/dst cals
        sf, ed = self.cal_trans(sc_time.calendar, #sc_time[0].calendar 
                                self.settings['dst_calendar'], year, month)
        DstCal = utime('seconds since %d-1-1' %year, 
                       self.settings['dst_calendar'])
        dst_start = DstCal.date2num(datetime(year, month, 1))
        dst_end = DstCal.date2num(datetime(year, month, ed, 23, 59, 59))

        self.S_cal = utime(sc_time.units, sc_time.calendar)#sc_time[0].units,sc_time[0].calendar)

        self.D_cal = utime('seconds since %d-1-1' %self.settings['base_year'], 
                           self.settings['dst_calendar'])

        src_date_seconds = np.zeros(len(sc_time.time_counter))
        for index in range(len(sc_time.time_counter)):
            tmp_date = self.S_cal.num2date(sc_time.time_counter[index])
            src_date_seconds[index] = DstCal.date2num(tmp_date) * sf

        # Get first and last date within range, init to cover entire range
        first_date = 0
        last_date = len(sc_time.time_counter) - 1 
James Harle's avatar
James Harle committed
470
        rev_seq = list(range(len(sc_time.time_counter)))
James Harle's avatar
James Harle committed
471 472 473 474 475 476 477 478 479 480 481 482 483 484
        rev_seq.reverse()
        for date in rev_seq:
            if src_date_seconds[date] < dst_start:
                first_date = date
                break
        for date in range(len(sc_time.time_counter)):
            if src_date_seconds[date] > dst_end:
                last_date = date
                break

        self.logger.info('first/last dates: %s %s', first_date, last_date)

        if self.first:
            nc_3 = GetFile(self.settings['src_msk'])
thopri's avatar
thopri committed
485 486 487 488 489 490 491 492 493
            # TODO: sort generic mask variable name
            try:
                varid_3 = nc_3['tmask']
                self.t_mask = varid_3[:1, :sc_z_len, j_run, i_run]
            except:
                varid_3 = nc_3['mask']
                varid_3 = np.expand_dims(varid_3, axis=0)
                self.t_mask = varid_3[:1, :sc_z_len, np.min(j_run):np.max(j_run) + 1, np.min(i_run):np.max(i_run) + 1]
            # TODO: Sort out issue with j_run and i_run not broadcasting to varid_3
James Harle's avatar
James Harle committed
494
            if self.key_vec:
thopri's avatar
thopri committed
495 496 497 498 499 500
                #varid_3 = nc_3['umask']
                varid_3 = nc_3['mask']
                self.u_mask = varid_3[:1, :sc_z_len, j_run, extended_i]
                #varid_3 = nc_3['vmask']
                varid_3 = nc_3['mask']
                self.v_mask = varid_3[:1, :sc_z_len, extended_j, i_run]
James Harle's avatar
James Harle committed
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
            nc_3.close()

        # Identify missing values and scale factors if defined
        meta_data = []
        meta_range = self.nvar
        if self.key_vec:
            meta_range += 1 
        for v in range(meta_range):
            meta_data.append({})
            for x in 'mv', 'sf', 'os', 'fv':
                meta_data[v][x] = np.ones((self.nvar, 1)) * np.NaN

        for v in range(self.nvar):
#            meta_data[v] = self._get_meta_data(sc_time[first_date].file_name, 
#                                               self.var_nam[v], meta_data[v])
            meta_data[v] = sc_time.get_meta_data(self.var_nam[v], meta_data[v])


        if self.key_vec:
            n = self.nvar
#            meta_data[n] = self.fnames_2[first_date].get_meta_data(self.var_nam[n], meta_data[n])
            meta_data[n] = self.fnames_2.get_meta_data(self.var_nam[n], meta_data[n])

524 525 526
        for vn in range(self.nvar):
            self.d_bdy[self.var_nam[vn]]['date'] = sc_time.date_counter[first_date:last_date + 1] 

James Harle's avatar
James Harle committed
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
        # Loop over identified files
        for f in range(first_date, last_date + 1):
            sc_array = [None, None]
            sc_alt_arr = [None, None]
            #self.logger.info('opening nc file: %s', sc_time[f].file_name)            
            # Counters not implemented

            sc_bdy = np.zeros((len(self.var_nam), sc_z_len, ind.shape[0], 
                              ind.shape[1]))

            # Loop over time entries from file f
            for vn in range(self.nvar):
                # Extract sub-region of data
                self.logger.info('var_nam = %s',self.var_nam[vn])
                varid = sc_time[self.var_nam[vn]]
                # If extracting vector quantities open second var
                if self.key_vec:
                    varid_2 = self.fnames_2[self.var_nam[vn+1]]#nc_2.variables[self.var_nam[vn + 1]]

                # Extract 3D scalar variables
                if not self.isslab and not self.key_vec:
                    self.logger.info(' 3D source array ')
                    sc_array[0] = varid[f:f+1 , :sc_z_len, j_run, i_run]
                # Extract 3D vector variables
                elif self.key_vec:
                    # For u vels take i-1
                    sc_alt_arr[0] = varid[f:f+1, :sc_z_len, j_run, extended_i]
                    # For v vels take j-1
                    sc_alt_arr[1] = varid_2[f:f+1, :sc_z_len, extended_j, i_run]
                # Extract 2D scalar vars
                else:
                    self.logger.info(' 2D source array ')
                    sc_array[0] = varid[f:f+1, j_run, i_run].reshape([1,1,j_run.size,i_run.size])

                # Average vector vars onto T-grid
                if self.key_vec:
                    # First make sure land points have a zero val
thopri's avatar
thopri committed
564 565
                    sc_alt_arr[0] *= self.u_mask
                    sc_alt_arr[1] *= self.v_mask
James Harle's avatar
James Harle committed
566 567 568 569 570 571 572 573 574 575 576
                    # Average from to T-grid assuming C-grid stagger
                    sc_array[0] = 0.5 * (sc_alt_arr[0][:,:,:,:-1] + 
                                         sc_alt_arr[0][:,:,:,1:])
                    sc_array[1] = 0.5 * (sc_alt_arr[1][:,:,:-1,:] +
                                         sc_alt_arr[1][:,:,1:,:])

                # Set land points to NaN and adjust with any scaling
                # Factor offset
                # Note using isnan/sum is relatively fast, but less than 
                # bottleneck external lib
                self.logger.info('SC ARRAY MIN MAX : %s %s', np.nanmin(sc_array[0]), np.nanmax(sc_array[0]))
thopri's avatar
thopri committed
577
                sc_array[0][self.t_mask == 0] = np.NaN
James Harle's avatar
James Harle committed
578 579 580 581 582 583 584
                self.logger.info( 'SC ARRAY MIN MAX : %s %s', np.nanmin(sc_array[0]), np.nanmax(sc_array[0]))
                if not np.isnan(np.sum(meta_data[vn]['sf'])):
                    sc_array[0] *= meta_data[vn]['sf']
                if not np.isnan(np.sum(meta_data[vn]['os'])):
                    sc_array[0] += meta_data[vn]['os']

                if self.key_vec:
thopri's avatar
thopri committed
585
                    sc_array[1][self.t_mask == 0] = np.NaN
James Harle's avatar
James Harle committed
586 587 588 589 590 591 592 593 594 595 596
                    if not np.isnan(np.sum(meta_data[vn + 1]['sf'])):
                        sc_array[1] *= meta_data[vn + 1]['sf']
                    if not np.isnan(np.sum(meta_data[vn + 1]['os'])):
                        sc_array[1] += meta_data[vn + 1]['os']

                # Now collapse the extracted data to an array 
                # containing only nearest neighbours to dest bdy points
                # Loop over the depth axis
                for dep in range(sc_z_len):
                    tmp_arr = [None, None]
                    # Consider squeezing
597
                    tmp_arr[0] = sc_array[0][0,dep,:,:].flatten('F') #[:,:,dep]
James Harle's avatar
James Harle committed
598 599 600
                    if not self.key_vec:
                        sc_bdy[vn, dep, :, :] = self._flat_ref(tmp_arr[0], ind)
                    else:
601
                        tmp_arr[1] = sc_array[1][0,dep,:,:].flatten('F') #[:,:,dep]
James Harle's avatar
James Harle committed
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
                        # Include in the collapse the rotation from the
                        # grid to real zonal direction, ie ij -> e
                        sc_bdy[vn, dep, :] = (tmp_arr[0][ind[:]] * self.gcos -
                                              tmp_arr[1][ind[:]] * self.gsin)
                        # Include... meridinal direction, ie ij -> n
                        sc_bdy[vn+1, dep, :] = (tmp_arr[1][ind[:]] * self.gcos +
                                                tmp_arr[0][ind[:]] * self.gsin)

                # End depths loop
                self.logger.info(' END DEPTHS LOOP ')
            # End Looping over vars
            self.logger.info(' END VAR LOOP ')
            # ! Skip sc_bdy permutation

            x = sc_array[0]
            y = np.isnan(x)
            z = np.invert(np.isnan(x))
            x[y] = 0
            self.logger.info('nans: %s', np.sum(y[:]))
            #x = x[np.invert(y)]
            self.logger.info('%s %s %s %s', x.shape, np.sum(x[z], dtype=np.float64), np.amin(x), np.amax(x))

            # Calculate weightings to be used in interpolation from
            # source data to dest bdy pts. Only need do once.
            if self.first:
                # identify valid pts
thopri's avatar
thopri committed
628
                self.data_ind = np.invert(np.isnan(sc_bdy[0,:,:,:]))
James Harle's avatar
James Harle committed
629 630 631 632 633 634 635
                # dist_tot is currently 2D so extend along depth
                # axis to allow single array calc later, also remove
                # any invalid pts using our eldritch data_ind
                self.logger.info('DIST TOT ZEROS BEFORE %s', np.sum(self.dist_tot == 0))
                self.dist_tot = (np.repeat(self.dist_tot, sc_z_len).reshape(
                            self.dist_tot.shape[0],
                            self.dist_tot.shape[1], sc_z_len)).transpose(2,0,1)
thopri's avatar
thopri committed
636
                self.dist_tot *= self.data_ind
James Harle's avatar
James Harle committed
637 638
                self.logger.info('DIST TOT ZEROS %s', np.sum(self.dist_tot == 0))

thopri's avatar
thopri committed
639
                self.logger.info('DIST IND ZEROS %s', np.sum(self.data_ind == 0))
James Harle's avatar
James Harle committed
640 641 642 643 644 645 646 647 648 649 650

                # Identify problem pts due to grid discontinuities 
                # using dists >  lat
                over_dist = np.sum(self.dist_tot[:] > 4)
                if over_dist > 0:
                    raise RuntimeError('''Distance between source location
                                          and new boundary points is greater
                                          than 4 degrees of lon/lat''')

                # Calculate guassian weighting with correlation dist
                r0 = self.settings['r0']
thopri's avatar
thopri committed
651
                self.dist_wei = (1/(r0 * np.power(2 * np.pi, 0.5)))*(np.exp( -0.5 *np.power(self.dist_tot / r0, 2)))
James Harle's avatar
James Harle committed
652
                # Calculate sum of weightings
thopri's avatar
thopri committed
653
                self.dist_fac = np.sum(self.dist_wei * self.data_ind, 2)
James Harle's avatar
James Harle committed
654
                # identify loc where all sc pts are land
thopri's avatar
thopri committed
655 656
                self.nan_ind = np.sum(self.data_ind, 2) == 0
                self.logger.info('NAN IND : %s ', np.sum(self.nan_ind))
James Harle's avatar
James Harle committed
657 658
                
                # Calc max zlevel to which data available on sc grid
thopri's avatar
thopri committed
659
                self.data_ind = np.sum(self.nan_ind == 0, 0) - 1
James Harle's avatar
James Harle committed
660 661 662
                # set land val to level 1 otherwise indexing problems
                # may occur- should not affect later results because
                # land is masked in weightings array
thopri's avatar
thopri committed
663
                self.data_ind[self.data_ind == -1] = 0
James Harle's avatar
James Harle committed
664 665
                # transform depth levels at each bdy pt to vector
                # index that can be used to speed up calcs
thopri's avatar
thopri committed
666
                self.data_ind += np.arange(0, sc_z_len * self.num_bdy, sc_z_len)
James Harle's avatar
James Harle committed
667 668 669 670 671 672 673

                # ? Attribute only used on first run so clear. 
                del self.dist_tot

            # weighted averaged onto new horizontal grid
            for vn in range(self.nvar):
                self.logger.info(' sc_bdy %s %s', np.nanmin(sc_bdy), np.nanmax(sc_bdy))
thopri's avatar
thopri committed
674 675
                dst_bdy = (np.nansum(sc_bdy[vn,:,:,:] * self.dist_wei, 2) /
                           self.dist_fac)
James Harle's avatar
James Harle committed
676 677 678 679 680 681 682 683
                self.logger.info(' dst_bdy %s %s', np.nanmin(dst_bdy), np.nanmax(dst_bdy))
                # Quick check to see we have not got bad values
                if np.sum(dst_bdy == np.inf) > 0:
                    raise RuntimeError('''Bad values found after 
                                          weighted averaging''')
                # weight vector array and rotate onto dest grid
                if self.key_vec:
                    # [:,:,:,vn+1]
thopri's avatar
thopri committed
684 685
                    dst_bdy_2 = (np.nansum(sc_bdy[vn+1,:,:,:] * self.dist_wei, 2) /
                                 self.dist_fac)
James Harle's avatar
James Harle committed
686 687 688 689 690 691 692 693
                    self.logger.info('time to to rot and rep ')
                    self.logger.info('%s %s',  np.nanmin(dst_bdy), np.nanmax(dst_bdy))
                    self.logger.info( '%s en to %s %s' , self.rot_str,self.rot_dir, dst_bdy.shape)
                    dst_bdy = rot_rep(dst_bdy, dst_bdy_2, self.rot_str,
                                      'en to %s' %self.rot_dir, self.dst_gcos, self.dst_gsin)
                    self.logger.info('%s %s', np.nanmin(dst_bdy), np.nanmax(dst_bdy))
                # Apply 1-2-1 filter along bdy pts using NN ind self.id_121
                if self.first:
thopri's avatar
thopri committed
694
                    self.tmp_valid = np.invert(np.isnan(
695
                                            dst_bdy.flatten('F')[self.id_121]))
James Harle's avatar
James Harle committed
696 697 698
                    # Finished first run operations
                    self.first = False

699
                dst_bdy = (np.nansum(dst_bdy.flatten('F')[self.id_121] * 
James Harle's avatar
James Harle committed
700
                           self.tmp_filt, 2) / np.sum(self.tmp_filt *
thopri's avatar
thopri committed
701
                           self.tmp_valid, 2))
James Harle's avatar
James Harle committed
702 703
                # Set land pts to zero

thopri's avatar
thopri committed
704 705
                self.logger.info(' pre dst_bdy[self.nan_ind] %s %s', np.nanmin(dst_bdy), np.nanmax(dst_bdy))
                dst_bdy[self.nan_ind] = 0
James Harle's avatar
James Harle committed
706 707 708 709 710 711 712 713
                self.logger.info(' post dst_bdy %s %s', np.nanmin(dst_bdy), np.nanmax(dst_bdy))
                # Remove any data on dst grid that is in land
                dst_bdy[:,np.isnan(self.bdy_z)] = 0
                self.logger.info(' 3 dst_bdy %s %s', np.nanmin(dst_bdy), np.nanmax(dst_bdy))

                # If we have depth dimension
                if not self.isslab:
                    # If all else fails fill down using deepest pt
714
                    dst_bdy = dst_bdy.flatten('F')
James Harle's avatar
James Harle committed
715
                    dst_bdy += ((dst_bdy == 0) *
thopri's avatar
thopri committed
716
                                dst_bdy[self.data_ind].repeat(sc_z_len))
James Harle's avatar
James Harle committed
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
                    # Weighted averaged on new vertical grid
                    dst_bdy = (dst_bdy[self.z_ind[:,0]] * self.z_dist[:,0] +
                               dst_bdy[self.z_ind[:,1]] * self.z_dist[:,1])
                    data_out = dst_bdy.reshape(self.dst_dep.shape, order='F')

                    # If z-level replace data below bed !!! make stat
                    # of this as could be problematic
                    ind_z = self.bdy_z.repeat(len(self.dst_dep))
                    ind_z = ind_z.reshape(len(self.dst_dep),
                                          len(self.bdy_z), order='F')
                    ind_z -= self.dst_dep
                    ind_z = ind_z < 0

                    data_out[ind_z] = np.NaN
                else:
                    data_out = dst_bdy
                    data_out[np.isnan(self.bdy_z)] = np.NaN
                entry = self.d_bdy[self.var_nam[vn]][year]
                if entry['data'] is None:
                    # Create entry with singleton 3rd dimension
                    entry['data'] = np.array([data_out])
                else:
                    entry['data'] = np.concatenate((entry['data'],
                                                   np.array([data_out])))
        
        # Need stats on fill pts in z and horiz + missing pts...
    # end month
#end year
# End great loop of crawling chaos


    # Allows reference of two equal sized but misshapen arrays
    # equivalent to Matlab alpha(beta(:)) 
    def _flat_ref(self, alpha, beta):
        """Extract input index elements from array and order them in Fotran array
        and returns the new array
        
        Keywork arguments:
        alpha -- input array
        beta -- index array 
        """
758
        return alpha.flatten('F')[beta.flatten('F')].reshape(
James Harle's avatar
James Harle committed
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
                                                   beta.shape, order='F')

    # Convert numeric date from source to dest
 #   def convert_date(self, date):
 #       val = self.S_cal.num2date(date)
 #       return self.D_cal.date2num(val)


    def cal_trans(self, source, dest, year, month):
        """Translate between calendars and return scale factor and number of days in month
        
        Keyword arguments:
        source -- source calendar
        dest -- destination calendar
        year -- input year
        month -- input month  
        """
        vals = {'gregorian': 365. + isleap(year), 'noleap': 
                365., '360_day': 360.}
James Harle's avatar
James Harle committed
778
        if source not in list(vals.keys()):
James Harle's avatar
James Harle committed
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
            raise ValueError('Unknown source calendar type: %s' %source)
        # Get month length
        if dest == '360_day':
            ed = 30
        else:
            ed = monthrange(year, month)[1]
        # Calculate scale factor
        sf = vals[source] / vals[dest]
        
        return sf, ed

    # BEWARE FORTRAN V C ordering
    # Replicates and tiles an array
    #def _trig_reptile(self, trig, size):
    #    trig = np.transpose(trig, (2, 1, 0)) # Matlab 2 0 1
    #    return np.tile(trig, (1, size, 1)) # Matlab size 1 1




    def time_interp(self, year, month):
        """
        Perform a time interpolation of the BDY data.
    
        This method performs a time interpolation (if required). This is necessary 
        if the time frequency is not a factor of monthly output or the input and
        output calendars differ. CF compliant calendar options accepted: gregorian
        | standard, proleptic_gregorian, noleap | 365_day, 360_day or julian.*
    
        Args:
    
        Returns:
            
        """
        # Extract time information 
814 815 816
        # TODO: check that we can just use var_nam[0]. Rational is that if 
        # we're grouping variables then they must all have the same date stamps
        nt           = len(self.d_bdy[self.var_nam[0]]['date'])
James Harle's avatar
James Harle committed
817 818 819 820 821
        time_counter = np.zeros([nt])
        tmp_cal      = utime('seconds since %d-1-1' %year,
                             self.settings['dst_calendar'].lower())
        
        for t in range(nt):
822
            time_counter[t] = tmp_cal.date2num(self.d_bdy[self.var_nam[0]]['date'][t])
James Harle's avatar
James Harle committed
823 824 825 826 827 828 829 830 831 832 833 834 835
        
        date_000 = datetime(year, month, 1, 12, 0, 0)
        if month < 12:
            date_end = datetime(year, month+1, 1, 12, 0, 0)
        else:
            date_end = datetime(year+1, 1, 1, 12, 0, 0)
        time_000 = tmp_cal.date2num(date_000)
        time_end = tmp_cal.date2num(date_end)
            
        # Take the difference of the first two time enteries to get delta t
        
        del_t = time_counter[1] - time_counter[0]
        dstep = 86400 / np.int(del_t)
836
        dstep = int(dstep)
James Harle's avatar
James Harle committed
837 838 839 840 841 842 843 844
        # TODO: put in a test to check all deltaT are the same otherwise throw 
        # an exception
    
        # If time freq. is greater than 86400s 
        # TODO put in an error handler for the unlikely event of frequency not a
        # multiple of 86400 | data are annual means
        if del_t >= 86400.:
            for v in self.var_nam:    
thopri's avatar
thopri committed
845
                intfn = interp1d(time_counter, self.d_bdy[v][year]['data'][:,:,:], axis=0,
James Harle's avatar
James Harle committed
846
                                                                 bounds_error=True)
847 848 849
                try:
                    self.d_bdy[v][year]['data'] = intfn(np.arange(time_000, time_end, 86400))
                except ValueError as e:
850
                    self.logger.error('Value error in time_counter, does time horizon in data and bdy file match?')
851
                    raise ValueError('Value error in time_counter, does time horizon in data and bdy file match?') from e
James Harle's avatar
James Harle committed
852 853 854 855 856
        else:
            for v in self.var_nam: 
                for t in range(dstep):
                    intfn = interp1d(time_counter[t::dstep], 
                       self.d_bdy[v].data[t::dstep,:,:], axis=0, bounds_error=True)
857 858 859
                    try:
                        self.d_bdy[v].data[t::dstep, :, :] = intfn(np.arange(time_000,time_end, 86400))
                    except ValueError as e:
860
                        self.logger.error('Value error in time_counter, does time horizon in data and bdy file match?')
861 862
                        raise ValueError('Value error in time_counter, does time horizon in data and bdy file match?') from e

James Harle's avatar
James Harle committed
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
        self.time_counter = time_counter
    
    def write_out(self, year, month, ind, unit_origin):
        """ 
        Writes monthy BDY data to netCDF file.
    
        This method writes out all available variables for a given grid along with
        any asscoaied metadata. Currently data are only written out as monthly 
        files.
    
        Args:
            year         (int) : year to write out
            month        (int) : month to write out
            ind          (dict): dictionary holding grid information
            unit_origin  (str) : time reference '%d-01-01 00:00:00' %year_000
            
        Returns:
        """
    
        # Define output filename    
        
        self.logger.info('Defining output file for grid %s, month: %d, year: %d', 
                    self.g_type.upper(), month, year)
       
        f_out = self.settings['dst_dir']+self.settings['fn']+ \
                '_bdy'+self.g_type.upper()+ '_y'+str(year)+'m'+'%02d' % month+'.nc'
                            
        ncgen.CreateBDYNetcdfFile(f_out, self.num_bdy,
                                  self.jpi, self.jpj, self.jpk,
                                  self.settings['rimwidth'],
                                  self.settings['dst_metainfo'],
                                  unit_origin,
                                  self.settings['fv'],
                                  self.settings['dst_calendar'],
thopri's avatar
thopri committed
897
                                  self.g_type.upper(),self.var_nam)
James Harle's avatar
James Harle committed
898 899 900 901 902 903 904
        
        self.logger.info('Writing out BDY data to: %s', f_out)
        
        # Loop over variables in extracted object
            
#        for v in self.variables:
        for v in self.var_nam:
905 906 907 908 909 910
            #if self.settings['dyn2d']: # Calculate depth averaged velocity
            #    tile_dz = np.tile(self.bdy_dz, [len(self.time_counter), 1, 1, 1])
            #    tmp_var = np.reshape(self.d_bdy[v][year]['data'][:,:,:], tile_dz.shape)
            #    tmp_var = np.nansum(tmp_var * tile_dz, 2) /np.nansum(tile_dz, 2)
            #else: # Replace NaNs with specified fill value
            tmp_var = np.where(np.isnan(self.d_bdy[v][year]['data'][:,:,:]),
James Harle's avatar
James Harle committed
911
                                            self.settings['fv'], 
thopri's avatar
thopri committed
912
                                            self.d_bdy[v][year]['data'][:,:,:])
James Harle's avatar
James Harle committed
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
               
            # Write variable to file
            
            ncpop.write_data_to_file(f_out, v, tmp_var)
    
        # Write remaining data to file (indices are in Python notation
        # therefore we must add 1 to i,j and r)
        ncpop.write_data_to_file(f_out, 'nav_lon', self.nav_lon)
        ncpop.write_data_to_file(f_out, 'nav_lat', self.nav_lat)
        ncpop.write_data_to_file(f_out, 'depth'+self.g_type, self.dst_dep)
        ncpop.write_data_to_file(f_out, 'nbidta', ind.bdy_i[:, 0] + 1)
        ncpop.write_data_to_file(f_out, 'nbjdta', ind.bdy_i[:, 1] + 1)
        ncpop.write_data_to_file(f_out, 'nbrdta', ind.bdy_r[:   ] + 1)
        ncpop.write_data_to_file(f_out, 'time_counter', self.time_counter)