flux_subs.py 27.2 KB
Newer Older
sbiri's avatar
sbiri committed
1
import numpy as np
2
from util_subs import (CtoK, kappa, gc, visc_air)
sbiri's avatar
sbiri committed
3

sbiri's avatar
sbiri committed
4
# ---------------------------------------------------------------------
sbiri's avatar
sbiri committed
5

sbiri's avatar
sbiri committed
6

sbiri's avatar
sbiri committed
7
def cdn_calc(u10n, Ta, Tp, lat, meth="S80"):
sbiri's avatar
sbiri committed
8
    """ Calculates neutral drag coefficient
sbiri's avatar
sbiri committed
9

sbiri's avatar
sbiri committed
10 11 12 13 14 15 16 17
    Parameters
    ----------
    u10n : float
        neutral 10m wind speed (m/s)
    Ta   : float
        air temperature (K)
    Tp   : float
        wave period
18 19
    lat : float
        latitude
sbiri's avatar
sbiri committed
20 21
    meth : str

sbiri's avatar
sbiri committed
22 23 24 25
    Returns
    -------
    cdn : float
    """
26
    cdn = np.zeros(Ta.shape)*np.nan
sbiri's avatar
sbiri committed
27
    if (meth == "S80"):
sbiri's avatar
sbiri committed
28 29
        cdn = np.where(u10n <= 3, (0.61+0.567/u10n)*0.001,
                       (0.61+0.063*u10n)*0.001)
sbiri's avatar
sbiri committed
30
    elif (meth == "LP82"):
sbiri's avatar
sbiri committed
31 32 33
        cdn = np.where((u10n < 11) & (u10n >= 4), 1.2*0.001,
                       np.where((u10n <= 25) & (u10n >= 11),
                       (0.49+0.065*u10n)*0.001, 1.14*0.001))
sbiri's avatar
sbiri committed
34 35 36 37
    elif (meth == "S88" or meth == "UA" or meth == "ERA5" or meth == "C30" or
          meth == "C35" or meth == "C40"):
        cdn = cdn_from_roughness(u10n, Ta, None, lat, meth)
    elif (meth == "YT96"):
sbiri's avatar
sbiri committed
38
        # for u<3 same as S80
sbiri's avatar
sbiri committed
39 40 41 42
        cdn = np.where((u10n < 6) & (u10n >= 3),
                       (0.29+3.1/u10n+7.7/u10n**2)*0.001,
                       np.where((u10n <= 26) & (u10n >= 6),
                       (0.60 + 0.070*u10n)*0.001, (0.61+0.567/u10n)*0.001))
sbiri's avatar
sbiri committed
43
    elif (meth == "LY04"):
sbiri's avatar
sbiri committed
44 45
        cdn = np.where(u10n >= 0.5,
                       (0.142+(2.7/u10n)+(u10n/13.09))*0.001, np.nan)
sbiri's avatar
sbiri committed
46
    else:
sbiri's avatar
sbiri committed
47
        print("unknown method cdn: "+meth)
sbiri's avatar
sbiri committed
48
    return cdn
sbiri's avatar
sbiri committed
49 50 51
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
52
def cdn_from_roughness(u10n, Ta, Tp, lat, meth="S88"):
sbiri's avatar
sbiri committed
53
    """ Calculates neutral drag coefficient from roughness length
sbiri's avatar
sbiri committed
54

sbiri's avatar
sbiri committed
55 56 57 58 59 60 61 62
    Parameters
    ----------
    u10n : float
        neutral 10m wind speed (m/s)
    Ta   : float
        air temperature (K)
    Tp   : float
        wave period
63 64
    lat : float
        latitude
sbiri's avatar
sbiri committed
65 66
    meth : str

sbiri's avatar
sbiri committed
67 68 69 70
    Returns
    -------
    cdn : float
    """
sbiri's avatar
sbiri committed
71
    g, tol = gc(lat, None), 0.000001
sbiri's avatar
sbiri committed
72 73 74
    cdn, usr = np.zeros(Ta.shape), np.zeros(Ta.shape)
    cdnn = (0.61+0.063*u10n)*0.001
    zo, zc, zs = np.zeros(Ta.shape), np.zeros(Ta.shape), np.zeros(Ta.shape)
sbiri's avatar
sbiri committed
75 76
    for it in range(5):
        cdn = np.copy(cdnn)
sbiri's avatar
sbiri committed
77
        usr = np.sqrt(cdn*u10n**2)
sbiri's avatar
sbiri committed
78
        if (meth == "S88"):
79
            # Charnock roughness length (eq. 4 in Smith 88)
sbiri's avatar
sbiri committed
80
            zc = 0.011*np.power(usr, 2)/g
81
            #  smooth surface roughness length (eq. 6 in Smith 88)
sbiri's avatar
sbiri committed
82
            zs = 0.11*visc_air(Ta)/usr
83
            zo = zc + zs  #  eq. 7 & 8 in Smith 88
sbiri's avatar
sbiri committed
84
        elif (meth == "UA"):
sbiri's avatar
sbiri committed
85 86
            # valid for 0<u<18m/s # Zeng et al. 1998 (24)
            zo = 0.013*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr
sbiri's avatar
sbiri committed
87 88 89 90 91 92 93
        elif (meth == "C30"):
            a = 0.011*np.ones(Ta.shape)
            a = np.where(u10n > 10, 0.011+(u10n-10)/(18-10)*(0.018-0.011),
                         np.where(u10n > 18, 0.018, a))
            zo = a*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr
        elif (meth == "C35"):
            a = 0.011*np.ones(Ta.shape)
94 95 96
            # a = np.where(u10n > 19, 0.0017*19-0.0050,
            #             np.where((u10n > 7) & (u10n <= 18),
            #                       0.0017*u10n-0.0050, a))
97
            a = np.where(u10n > 19, 0.0017*19-0.0050, 0.0017*u10n-0.0050)
sbiri's avatar
sbiri committed
98 99 100 101 102 103
            zo = 0.11*visc_air(Ta)/usr+a*np.power(usr, 2)/g
        elif (meth == "C40"):
            a = 0.011*np.ones(Ta.shape)
            a = np.where(u10n > 22, 0.0016*22-0.0035, 0.0016*u10n-0.0035)
            zo = a*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr # surface roughness
        elif (meth == "ERA5"):
104
            # eq. (3.26) p.38 over sea IFS Documentation cy46r1
105
            zo = 0.018*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr
sbiri's avatar
sbiri committed
106
        else:
sbiri's avatar
sbiri committed
107
            print("unknown method for cdn_from_roughness "+meth)
sbiri's avatar
sbiri committed
108
        cdnn = (kappa/np.log(10/zo))**2
sbiri's avatar
sbiri committed
109
    cdn = np.where(np.abs(cdnn-cdn) < tol, cdnn, np.nan)
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    return cdn
# ---------------------------------------------------------------------


def cd_calc(cdn, height, ref_ht, psim):
    """ Calculates drag coefficient at reference height

    Parameters
    ----------
    cdn : float
        neutral drag coefficient
    height : float
        original sensor height (m)
    ref_ht : float
        reference height (m)
    psim : float
        momentum stability function

    Returns
    -------
    cd : float
    """
    cd = (cdn/np.power(1+(np.sqrt(cdn)*(np.log(height/ref_ht)-psim))/kappa, 2))
    return cd
sbiri's avatar
sbiri committed
134
# ---------------------------------------------------------------------
sbiri's avatar
sbiri committed
135

sbiri's avatar
sbiri committed
136

sbiri's avatar
sbiri committed
137
def ctcqn_calc(zol, cdn, u10n, zo, Ta, meth="S80"):
sbiri's avatar
sbiri committed
138
    """ Calculates neutral heat and moisture exchange coefficients
sbiri's avatar
sbiri committed
139

sbiri's avatar
sbiri committed
140 141 142 143 144
    Parameters
    ----------
    zol  : float
        height over MO length
    cdn  : float
145
        neutral drag coefficient
sbiri's avatar
sbiri committed
146 147 148 149 150 151
    u10n : float
        neutral 10m wind speed (m/s)
    zo   : float
        surface roughness (m)
    Ta   : float
        air temperature (K)
sbiri's avatar
sbiri committed
152 153
    meth : str

sbiri's avatar
sbiri committed
154 155 156 157 158 159 160
    Returns
    -------
    ctn : float
        neutral heat exchange coefficient
    cqn : float
        neutral moisture exchange coefficient
    """
sbiri's avatar
sbiri committed
161
    if (meth == "S80" or meth == "S88" or meth == "YT96"):
sbiri's avatar
sbiri committed
162
        cqn = np.ones(Ta.shape)*1.20*0.001  # from S88
sbiri's avatar
sbiri committed
163
        ctn = np.ones(Ta.shape)*1.00*0.001
sbiri's avatar
sbiri committed
164
    elif (meth == "LP82"):
sbiri's avatar
sbiri committed
165
        cqn = np.where((zol <= 0) & (u10n > 4) & (u10n < 14), 1.15*0.001,
166
                       1*0.001)
sbiri's avatar
sbiri committed
167 168
        ctn = np.where((zol <= 0) & (u10n > 4) & (u10n < 25), 1.13*0.001,
                       0.66*0.001)
sbiri's avatar
sbiri committed
169 170 171 172 173
    elif (meth == "LY04"):
        cqn = 34.6*0.001*np.sqrt(cdn)
        ctn = np.where(zol <= 0, 32.7*0.001*np.sqrt(cdn), 18*0.001*np.sqrt(cdn))
    elif (meth == "UA"):
        usr = np.sqrt(cdn*np.power(u10n, 2))
sbiri's avatar
sbiri committed
174
        # Zeng et al. 1998 (25)
sbiri's avatar
sbiri committed
175 176
        re=usr*zo/visc_air(Ta)
        zoq = zo/np.exp(2.67*np.power(re, 1/4)-2.57)
sbiri's avatar
sbiri committed
177 178 179 180 181
        zot = zoq
        cqn = np.where((u10n > 0.5) & (u10n < 18), np.power(kappa, 2) /
                       (np.log(10/zo)*np.log(10/zoq)), np.nan)
        ctn = np.where((u10n > 0.5) & (u10n < 18), np.power(kappa, 2) /
                       (np.log(10/zo)*np.log(10/zoq)), np.nan)
sbiri's avatar
sbiri committed
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    elif (meth == "C30"):
        usr = np.sqrt(cdn*np.power(u10n, 2))
        rr = zo*usr/visc_air(Ta)
        zoq = np.where(5e-5/np.power(rr, 0.6) > 1.15e-4, 1.15e-4,
                       5e-5/np.power(rr, 0.6))  # moisture roughness
        zot=zoq  # temperature roughness
        cqn = kappa**2/np.log(10/zo)/np.log(10/zoq)
        ctn = kappa**2/np.log(10/zo)/np.log(10/zot)
    elif (meth == "C35"):
        usr = np.sqrt(cdn*np.power(u10n, 2))
        rr = zo*usr/visc_air(Ta)
        zoq = np.where(5.8e-5/np.power(rr, 0.72) > 1.6e-4, 1.6e-4,
                       5.8e-5/np.power(rr, 0.72))  # moisture roughness
        zot=zoq  # temperature roughness
        cqn = kappa**2/np.log(10/zo)/np.log(10/zoq)
        ctn = kappa**2/np.log(10/zo)/np.log(10/zot)
    elif (meth == "C40"):
        usr = np.sqrt(cdn*np.power(u10n, 2))
        rr = zo*usr/visc_air(Ta)
        zot = np.where(1.0e-4/np.power(rr, 0.55) > 2.4e-4/np.power(rr, 1.2),
                       2.4e-4/np.power(rr, 1.2),
                       1.0e-4/np.power(rr, 0.55)) # temperature roughness
        zoq = np.where(2.0e-5/np.power(rr,0.22) > 1.1e-4/np.power(rr,0.9),
                       1.1e-4/np.power(rr,0.9), 2.0e-5/np.power(rr,0.22))
        # moisture roughness determined by the CLIMODE, GASEX and CBLAST data
#        zoq = np.where(5e-5/np.power(rr, 0.6) > 1.15e-4, 1.15e-4,
#                       5e-5/np.power(rr, 0.6))  # moisture roughness as in C30
        cqn = kappa**2/np.log(10/zo)/np.log(10/zoq)
        ctn = kappa**2/np.log(10/zo)/np.log(10/zot)
    elif (meth == "ERA5"):
212
        # eq. (3.26) p.38 over sea IFS Documentation cy46r1
sbiri's avatar
sbiri committed
213 214 215 216 217
        usr = np.sqrt(cdn*np.power(u10n, 2))
        zot = 0.40*visc_air(Ta)/usr
        zoq = 0.62*visc_air(Ta)/usr
        cqn = kappa**2/np.log(10/zo)/np.log(10/zoq)
        ctn = kappa**2/np.log(10/zo)/np.log(10/zot)
sbiri's avatar
sbiri committed
218
    else:
sbiri's avatar
sbiri committed
219
        print("unknown method ctcqn: "+meth)
sbiri's avatar
sbiri committed
220
    return ctn, cqn
sbiri's avatar
sbiri committed
221 222 223
# ---------------------------------------------------------------------


224
def ctcq_calc(cdn, cd, ctn, cqn, ht, hq, ref_ht, psit, psiq):
sbiri's avatar
sbiri committed
225
    """ Calculates heat and moisture exchange coefficients at reference height
sbiri's avatar
sbiri committed
226

sbiri's avatar
sbiri committed
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    Parameters
    ----------
    cdn : float
        neutral drag coefficient
    cd  : float
        drag coefficient at reference height
    ctn : float
        neutral heat exchange coefficient
    cqn : float
        neutral moisture exchange coefficient
    h_t : float
        original temperature sensor height (m)
    h_q : float
        original moisture sensor height (m)
    ref_ht : float
        reference height (m)
    psit : float
        heat stability function
    psiq : float
        moisture stability function
sbiri's avatar
sbiri committed
247

sbiri's avatar
sbiri committed
248 249 250
    Returns
    -------
    ct : float
251
       heat exchange coefficient
sbiri's avatar
sbiri committed
252
    cq : float
253
       moisture exchange coefficient
sbiri's avatar
sbiri committed
254
    """
255
    ct = (ctn*np.sqrt(cd/cdn) /
256
          (1+ctn*((np.log(ht/ref_ht)-psit)/(kappa*np.sqrt(cdn)))))
257
    cq = (cqn*np.sqrt(cd/cdn) /
258
          (1+cqn*((np.log(hq/ref_ht)-psiq)/(kappa*np.sqrt(cdn)))))
sbiri's avatar
sbiri committed
259
    return ct, cq
sbiri's avatar
sbiri committed
260 261 262
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
def get_stabco(meth="S80"):
    """ Gives the coefficients \\alpha, \\beta, \\gamma for stability functions

    Parameters
    ----------
    meth : str

    Returns
    -------
    coeffs : float
    """
    alpha, beta, gamma = 0, 0, 0
    if (meth == "S80" or meth == "S88" or meth == "LY04" or
        meth == "UA" or meth == "ERA5" or meth == "C30" or meth == "C35" or
        meth == "C40"):
        alpha, beta, gamma = 16, 0.25, 5  # Smith 1980, from Dyer (1974)
    elif (meth == "LP82"):
        alpha, beta, gamma = 16, 0.25, 7
    elif (meth == "YT96"):
        alpha, beta, gamma = 20, 0.25, 5
    else:
        print("unknown method stabco: "+meth)
    coeffs = np.zeros(3)
    coeffs[0] = alpha
    coeffs[1] = beta
    coeffs[2] = gamma
    return coeffs
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
293
def psim_calc(zol, meth="S80"):
sbiri's avatar
sbiri committed
294
    """ Calculates momentum stability function
sbiri's avatar
sbiri committed
295

sbiri's avatar
sbiri committed
296 297 298 299
    Parameters
    ----------
    zol : float
        height over MO length
sbiri's avatar
sbiri committed
300 301
    meth : str

sbiri's avatar
sbiri committed
302 303 304 305
    Returns
    -------
    psim : float
    """
sbiri's avatar
sbiri committed
306
    if (meth == "ERA5"):
307
        psim = psim_era5(zol)
sbiri's avatar
sbiri committed
308 309
    elif (meth == "C30" or meth == "C35" or meth == "C40"):
        psim = psiu_26(zol, meth)
sbiri's avatar
sbiri committed
310
    else:
311 312
        psim = np.where(zol < 0, psim_conv(zol, meth),
                        psim_stab(zol, meth))
sbiri's avatar
sbiri committed
313
    return psim
sbiri's avatar
sbiri committed
314 315 316
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
317
def psit_calc(zol, meth="S80"):
sbiri's avatar
sbiri committed
318
    """ Calculates heat stability function
sbiri's avatar
sbiri committed
319

sbiri's avatar
sbiri committed
320 321 322 323
    Parameters
    ----------
    zol : float
        height over MO length
sbiri's avatar
sbiri committed
324
    meth : str
325
        parameterisation method
sbiri's avatar
sbiri committed
326

sbiri's avatar
sbiri committed
327 328 329 330
    Returns
    -------
    psit : float
    """
sbiri's avatar
sbiri committed
331
    if (meth == "ERA5"):
332 333
        psit = np.where(zol < 0, psi_conv(zol, meth),
                        psi_era5(zol))
sbiri's avatar
sbiri committed
334 335
    elif (meth == "C30" or meth == "C35" or meth == "C40"):
        psit = psit_26(zol)
sbiri's avatar
sbiri committed
336
    else:
337 338
        psit = np.where(zol < 0, psi_conv(zol, meth),
                        psi_stab(zol, meth))
sbiri's avatar
sbiri committed
339
    return psit
sbiri's avatar
sbiri committed
340 341 342
# ---------------------------------------------------------------------


343
def psi_era5(zol):
sbiri's avatar
sbiri committed
344
    """ Calculates heat stability function for stable conditions
sbiri's avatar
sbiri committed
345
        for method ERA5
sbiri's avatar
sbiri committed
346

sbiri's avatar
sbiri committed
347 348 349 350
    Parameters
    ----------
    zol : float
        height over MO length
sbiri's avatar
sbiri committed
351

sbiri's avatar
sbiri committed
352 353 354 355
    Returns
    -------
    psit : float
    """
356
    # eq (3.22) p. 37 IFS Documentation cy46r1
sbiri's avatar
sbiri committed
357 358
    a, b, c, d = 1, 2/3, 5, 0.35
    psit = -b*(zol-c/d)*np.exp(-d*zol)-np.power(1+(2/3)*a*zol, 1.5)-(b*c)/d+1
sbiri's avatar
sbiri committed
359
    return psit
sbiri's avatar
sbiri committed
360 361
# ---------------------------------------------------------------------

sbiri's avatar
sbiri committed
362 363 364 365 366 367 368 369 370 371 372 373 374 375

def psit_26(zol):
    """ Computes temperature structure function as in C35

    Parameters
    ----------
    zol : float
        height over MO length

    Returns
    -------
    psi : float
    """
    b, d = 2/3, 0.35
376 377 378 379 380 381 382 383
    dzol = np.where(d*zol > 50, 50, d*zol)
    psi = np.where(zol > 0,-(np.power(1+b*zol, 1.5)+b*(zol-14.28) *
                             np.exp(-dzol)+8.525), np.nan)
    psik = np.where(zol < 0, 2*np.log((1+np.sqrt(1-15*zol))/2), np.nan)
    psic = np.where(zol < 0, 1.5*np.log((1+np.power(1-34.15*zol, 1/3) +
                    np.power(1-34.15*zol, 2/3))/3)-np.sqrt(3) *
                    np.arctan(1+2*np.power(1-34.15*zol, 1/3))/np.sqrt(3) +
                    4*np.arctan(1)/np.sqrt(3), np.nan)
384 385
    f = np.power(zol, 2)/(1+np.power(zol, 2))
    psi = np.where(zol < 0, (1-f)*psik+f*psic, psi)
sbiri's avatar
sbiri committed
386 387 388 389
    return psi
# ---------------------------------------------------------------------


390
def psi_conv(zol, meth):
sbiri's avatar
sbiri committed
391
    """ Calculates heat stability function for unstable conditions
sbiri's avatar
sbiri committed
392

sbiri's avatar
sbiri committed
393 394 395 396
    Parameters
    ----------
    zol : float
        height over MO length
397 398
    meth : str
        parameterisation method
sbiri's avatar
sbiri committed
399

sbiri's avatar
sbiri committed
400 401 402 403
    Returns
    -------
    psit : float
    """
404 405
    coeffs = get_stabco(meth)
    alpha, beta = coeffs[0], coeffs[1]
406 407
    xtmp = np.power(1-alpha*zol, beta)
    psit = 2*np.log((1+np.power(xtmp, 2))*0.5)
sbiri's avatar
sbiri committed
408
    return psit
sbiri's avatar
sbiri committed
409 410 411
# ---------------------------------------------------------------------


412
def psi_stab(zol, meth):
sbiri's avatar
sbiri committed
413
    """ Calculates heat stability function for stable conditions
sbiri's avatar
sbiri committed
414

sbiri's avatar
sbiri committed
415 416 417 418
    Parameters
    ----------
    zol : float
        height over MO length
419 420
    meth : str
        parameterisation method
sbiri's avatar
sbiri committed
421

sbiri's avatar
sbiri committed
422 423 424 425
    Returns
    -------
    psit : float
    """
426 427
    coeffs = get_stabco(meth)
    gamma = coeffs[2]
sbiri's avatar
sbiri committed
428
    psit = -gamma*zol
sbiri's avatar
sbiri committed
429
    return psit
sbiri's avatar
sbiri committed
430 431 432
# ---------------------------------------------------------------------


433 434
def psim_era5(zol):
    """ Calculates momentum stability function for method ERA5
sbiri's avatar
sbiri committed
435

sbiri's avatar
sbiri committed
436 437 438 439
    Parameters
    ----------
    zol : float
        height over MO length
sbiri's avatar
sbiri committed
440

sbiri's avatar
sbiri committed
441 442 443 444
    Returns
    -------
    psim : float
    """
445 446 447 448
    # eq (3.20, 3.22) p. 37 IFS Documentation cy46r1
    coeffs = get_stabco("ERA5")
    alpha, beta = coeffs[0], coeffs[1]
    xtmp = np.power(1-alpha*zol, beta)
sbiri's avatar
sbiri committed
449
    a, b, c, d = 1, 2/3, 5, 0.35
450 451 452
    psim = np.where(zol < 0, np.pi/2-2*np.arctan(xtmp) +
                    np.log((np.power(1+xtmp, 2)*(1+np.power(xtmp, 2)))/8),
                    -b*(zol-c/d)*np.exp(-d*zol)-a*zol-(b*c)/d)
sbiri's avatar
sbiri committed
453 454 455 456
    return psim
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
def psiu_26(zol, meth):
    """ Computes velocity structure function C35

    Parameters
    ----------
    zol : float
        height over MO length

    Returns
    -------
    psi : float
    """
    if (meth == "C30"):
        dzol = np.where(0.35*zol > 50, 50, 0.35*zol) # stable
        psi = np.where(zol > 0, -((1+zol)+0.6667*(zol-14.28)*np.exp(-dzol) +
                                  8.525), np.nan)
        x = np.where(zol < 0, np.power(1-15*zol, 0.25), np.nan)
        psik = np.where(zol < 0, 2*np.log((1+x)/2)+np.log((1+np.power(x, 2)) /
                        2)-2*np.arctan(x)+2*np.arctan(1), np.nan)
        x = np.where(zol < 0, np.power(1-10.15*zol, 0.3333), np.nan)
        psic = np.where(zol < 0, 1.5*np.log((1+x+np.power(x, 2))/3) -
                        np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3)) +
                        4*np.arctan(1)/np.sqrt(3), np.nan)
        f = np.power(zol, 2)/(1+np.power(zol, 2))
        psi = np.where(zol < 0, (1-f)*psik+f*psic, psi)
    elif (meth == "C35" or meth == "C40"):
        dzol = np.where(0.35*zol > 50, 50, 0.35*zol)  # stable
        a, b, c, d = 0.7, 3/4, 5, 0.35
        psi = np.where(zol > 0, -(a*zol+b*(zol-c/d)*np.exp(-dzol)+b*c/d),
                       np.nan)
        x = np.where(zol < 0, np.power(1-15*zol, 0.25), np.nan)
        psik = np.where(zol < 0, 2*np.log((1+x)/2)+np.log((1+x**2)/2) -
                        2*np.arctan(x)+2*np.arctan(1), np.nan)
        x = np.where(zol < 0, np.power(1-10.15*zol, 0.3333), np.nan)
        psic = np.where(zol < 0, 1.5*np.log((1+x+np.power(x, 2))/3) -
                        np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3)) +
                        4*np.arctan(1)/np.sqrt(3), np.nan)
        f = np.power(zol, 2)/(1+np.power(zol, 2))
        psi = np.where(zol < 0, (1-f)*psik+f*psic, psi)
    return psi
497 498
#------------------------------------------------------------------------------

sbiri's avatar
sbiri committed
499 500


501
def psim_conv(zol, meth):
sbiri's avatar
sbiri committed
502
    """ Calculates momentum stability function for unstable conditions
sbiri's avatar
sbiri committed
503

sbiri's avatar
sbiri committed
504 505 506 507
    Parameters
    ----------
    zol : float
        height over MO length
508 509
    meth : str
        parameterisation method
sbiri's avatar
sbiri committed
510

sbiri's avatar
sbiri committed
511 512 513 514
    Returns
    -------
    psim : float
    """
515 516
    coeffs = get_stabco(meth)
    alpha, beta = coeffs[0], coeffs[1]
517 518
    xtmp = np.power(1-alpha*zol, beta)
    psim = (2*np.log((1+xtmp)*0.5)+np.log((1+np.power(xtmp, 2))*0.5) -
sbiri's avatar
sbiri committed
519
            2*np.arctan(xtmp)+np.pi/2)
sbiri's avatar
sbiri committed
520
    return psim
sbiri's avatar
sbiri committed
521 522 523
# ---------------------------------------------------------------------


524
def psim_stab(zol, meth):
sbiri's avatar
sbiri committed
525
    """ Calculates momentum stability function for stable conditions
sbiri's avatar
sbiri committed
526

sbiri's avatar
sbiri committed
527 528 529 530
    Parameters
    ----------
    zol : float
        height over MO length
531 532
    meth : str
        parameterisation method
sbiri's avatar
sbiri committed
533

sbiri's avatar
sbiri committed
534 535 536 537
    Returns
    -------
    psim : float
    """
538 539
    coeffs = get_stabco(meth)
    gamma = coeffs[2]
sbiri's avatar
sbiri committed
540 541 542 543 544
    psim = -gamma*zol
    return psim
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
545
def get_skin(sst, qsea, rho, Rl, Rs, Rnl, cp, lv, tkt, usr, tsr, qsr, lat):
sbiri's avatar
sbiri committed
546
    """ Computes cool skin
sbiri's avatar
sbiri committed
547

sbiri's avatar
sbiri committed
548 549 550 551 552 553 554 555 556 557 558 559
    Parameters
    ----------
    sst : float
        sea surface temperature ($^\circ$\,C)
    qsea : float
        specific humidity over sea (g/kg)
    rho : float
        density of air (kg/m^3)
    Rl : float
        downward longwave radiation (W/m^2)
    Rs : float
        downward shortwave radiation (W/m^2)
sbiri's avatar
sbiri committed
560 561
    Rnl : float
        upwelling IR radiation (W/m^2)
sbiri's avatar
sbiri committed
562 563 564 565
    cp : float
       specific heat of air at constant pressure
    lv : float
       latent heat of vaporization
sbiri's avatar
sbiri committed
566 567
    tkt : float
       cool skin thickness
sbiri's avatar
sbiri committed
568 569 570 571 572 573 574 575
    usr : float
       friction velocity
    tsr : float
       star temperature
    qsr : float
       star humidity
    lat : float
       latitude
sbiri's avatar
sbiri committed
576

sbiri's avatar
sbiri committed
577 578 579
    Returns
    -------
    dter : float
sbiri's avatar
sbiri committed
580 581
    dqer : float

sbiri's avatar
sbiri committed
582
    """
sbiri's avatar
sbiri committed
583 584
    # coded following Saunders (1967) with lambda = 6
    g = gc(lat, None)
sbiri's avatar
sbiri committed
585 586
    if (np.nanmin(sst) > 200):  # if sst in Kelvin convert to Celsius
        sst = sst-CtoK
sbiri's avatar
sbiri committed
587 588 589 590
    # ************  cool skin constants  *******
    # density of water, specific heat capacity of water, water viscosity,
    # thermal conductivity of water
    rhow, cpw, visw, tcw = 1022, 4000, 1e-6, 0.6
sbiri's avatar
sbiri committed
591
    Al = 2.1e-5*np.power(sst+3.2, 0.79)
sbiri's avatar
sbiri committed
592
    be = 0.026
sbiri's avatar
sbiri committed
593 594
    bigc = 16*g*cpw*np.power(rhow*visw, 3)/(np.power(tcw, 2)*np.power(rho, 2))
    wetc = 0.622*lv*qsea/(287.1*np.power(sst+273.16, 2))
sbiri's avatar
sbiri committed
595 596 597 598 599 600 601
    Rns = 0.945*Rs  # albedo correction
    hsb = -rho*cp*usr*tsr
    hlb = -rho*lv*usr*qsr
    qout = Rnl+hsb+hlb
    dels = Rns*(0.065+11*tkt-6.6e-5/tkt*(1-np.exp(-tkt/8.0e-4)))
    qcol = qout-dels
    alq = Al*qcol+be*hlb*cpw/lv
sbiri's avatar
sbiri committed
602
    xlamx = 6*np.ones(sst.shape)
sbiri's avatar
sbiri committed
603
    xlamx = np.where(alq > 0, 6/(1+(bigc*alq/usr**4)**0.75)**0.333, 6)
sbiri's avatar
sbiri committed
604 605 606
    tkt = np.where(alq > 0, xlamx*visw/(np.sqrt(rho/rhow)*usr),
                   np.where(xlamx*visw/(np.sqrt(rho/rhow)*usr) > 0.01, 0.01,
                   xlamx*visw/(np.sqrt(rho/rhow)*usr)))
sbiri's avatar
sbiri committed
607 608
    dter = qcol*tkt/tcw
    dqer = wetc*dter
sbiri's avatar
sbiri committed
609
    return dter, dqer, tkt
sbiri's avatar
sbiri committed
610 611 612 613
# ---------------------------------------------------------------------


def get_gust(beta, Ta, usr, tsrv, zi, lat):
sbiri's avatar
sbiri committed
614
    """ Computes gustiness
sbiri's avatar
sbiri committed
615

sbiri's avatar
sbiri committed
616 617 618 619 620 621 622 623 624 625 626 627 628 629
    Parameters
    ----------
    beta : float
        constant
    Ta : float
        air temperature (K)
    usr : float
        friction velocity (m/s)
    tsrv : float
        star virtual temperature of air (K)
    zi : int
        scale height of the boundary layer depth (m)
    lat : float
        latitude
sbiri's avatar
sbiri committed
630

sbiri's avatar
sbiri committed
631 632 633 634
    Returns
    -------
    ug : float
    """
635
    if (np.nanmax(Ta) < 200):  # convert to K if in Celsius
sbiri's avatar
sbiri committed
636 637
        Ta = Ta+273.16
    g = gc(lat, None)
sbiri's avatar
sbiri committed
638
    Bf = (-g/Ta)*usr*tsrv
sbiri's avatar
sbiri committed
639 640 641 642 643 644
    ug = np.ones(np.shape(Ta))*0.2
    ug = np.where(Bf > 0, beta*np.power(Bf*zi, 1/3), 0.2)
    return ug
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
645
def get_L(L, lat, usr, tsr, qsr, t10n, tv10n, qair, h_in, T, Ta, th, tv, sst,
646
          dt, dtv, dq, zo, wind, monob, meth):
sbiri's avatar
sbiri committed
647 648 649 650 651 652 653
    """
    calculates Monin-Obukhov length and virtual star temperature

    Parameters
    ----------
    L : int
        Monin-Obukhov length definition options
654 655
           "S80"  : default for S80, S88, LP82, YT96 and LY04
           "ERA5" : following ERA5 (IFS Documentation cy46r1), default for ERA5
sbiri's avatar
sbiri committed
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
    lat : float
        latitude
    usr : float
        friction wind speed (m/s)
    tsr : float
        star temperature (K)
    qsr : float
        star specific humidity (g/kg)
    t10n : float
        neutral temperature at 10m (K)
    tv10n : float
        neutral virtual temperature at 10m (K)
    qair : float
        air specific humidity (g/kg)
    h_in : float
        sensor heights (m)
    T : float
        air temperature (K)
    Ta : float
        air temperature (K)
    th : float
        potential temperature (K)
    tv : float
        virtual temperature (K)
    sst : float
        sea surface temperature (K)
    dt : float
        temperature difference (K)
    dq : float
        specific humidity difference (g/kg)
    wind : float
        wind speed (m/s)
    monob : float
        Monin-Obukhov length from previous iteration step (m)
    meth : str
        bulk parameterisation method option: "S80", "S88", "LP82", "YT96", "UA",
        "LY04", "C30", "C35", "C40", "ERA5"

    Returns
    -------
696 697 698 699
    tsrv : float
        virtual star temperature (K)
    monob : float
        M-O length (m)
sbiri's avatar
sbiri committed
700 701

    """
sbiri's avatar
sbiri committed
702
    g = gc(lat)
703
    if (L == "S80"):
sbiri's avatar
sbiri committed
704 705 706
        tsrv = tsr+0.61*t10n*qsr
        monob = ((tv10n*np.power(usr, 2))/(g*kappa*tsrv))
        monob = np.where(np.fabs(monob) < 1, np.where(monob < 0, -1, 1), monob)
707
     elif (L == "ERA5"):
sbiri's avatar
sbiri committed
708 709 710 711 712 713 714 715 716 717 718 719 720
        tsrv = tsr+0.61*t10n*qsr
        Rb = ((g*h_in[0]*((2*dt)/(Ta+sst-g*h_in[0])+0.61*dq)) /
              np.power(wind, 2))
        zo = (0.11*visc_air(Ta)/usr+0.018*np.power(usr, 2)/g)
        zot = 0.40*visc_air(Ta)/usr
        zol = (Rb*(np.power(np.log((h_in[0]+zo)/zo)-psim_calc((h_in[0]+zo) /
                                                              monob, meth) +
                            psim_calc(zo/monob, meth), 2) /
                   (np.log((h_in[0]+zo)/zot) -
                    psit_calc((h_in[0]+zo)/monob, meth) +
                    psit_calc(zot/monob, meth))))
        monob = h_in[0]/zol
    return tsrv, monob
sbiri's avatar
sbiri committed
721 722 723
#------------------------------------------------------------------------------


724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
def get_strs(h_in, monob, wind, zo, zot, zoq, dt, dq, dter, dqer, ct, cq,
             cskin, meth):
    """
    calculates star wind speed, temperature and specific humidity

    Parameters
    ----------
    h_in : float
        sensor heights (m)
    monob : float
        M-O length (m)
    wind : float
        wind speed (m/s)
    zo : float
        momentum roughness length (m)
    zot : float
        temperature roughness length (m)
    zoq : float
        moisture roughness length (m)
    dt : float
        temperature difference (K)
    dq : float
        specific humidity difference (g/kg)
    dter : float
        cskin temperature adjustment (K)
    dqer : float
750
        cskin q adjustment (g/kg)
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
    ct : float
        temperature exchange coefficient
    cq : float
        moisture exchange coefficient
    cskin : int
        cool skin adjustment switch
    meth : str
        bulk parameterisation method option: "S80", "S88", "LP82", "YT96", "UA",
        "LY04", "C30", "C35", "C40", "ERA5"

    Returns
    -------
    usr : float
        friction wind speed (m/s)
    tsr : float
        star temperature (K)
    qsr : float
        star specific humidity (g/kg)

    """
    if (meth == "UA"):
772
        usr = np.where(h_in[0]/monob <= -1.574, kappa*wind /
773 774 775 776
                       (np.log(-1.574*monob/zo)-psim_calc(-1.574, meth) +
                        psim_calc(zo/monob, meth) +
                        1.14*(np.power(-h_in[0]/monob, 1/3) -
                        np.power(1.574, 1/3))),
777 778 779 780 781 782 783 784 785 786 787
                       np.where(h_in[0]/monob < 0, kappa*wind /
                                (np.log(h_in[0]/zo) -
                                 psim_calc(h_in[0]/monob, meth) +
                                 psim_calc(zo/monob, meth)),
                                np.where(h_in[0]/monob <= 1, kappa*wind /
                                         (np.log(h_in[0]/zo) +
                                          5*h_in[0]/monob-5*zo/monob),
                                         kappa*wind/(np.log(monob/zo)+5 -
                                                     5*zo/monob +
                                                     5*np.log(h_in[0]/monob) +
                                                     h_in[0]/monob-1))))
788 789 790 791 792
                                # Zeng et al. 1998 (7-10)
        tsr = np.where(h_in[1]/monob < -0.465, kappa*(dt+dter*cskin) /
                       (np.log((-0.465*monob)/zot) -
                        psit_calc(-0.465, meth)+0.8*(np.power(0.465, -1/3) -
                        np.power(-h_in[1]/monob, -1/3))),
793 794 795 796 797 798 799 800 801 802 803 804
                       np.where(h_in[1]/monob < 0, kappa*(dt+dter*cskin) /
                                (np.log(h_in[1]/zot) -
                                 psit_calc(h_in[1]/monob, meth) +
                                 psit_calc(zot/monob, meth)),
                                np.where(h_in[1]/monob <= 1,
                                         kappa*(dt+dter*cskin) /
                                         (np.log(h_in[1]/zot) +
                                          5*h_in[1]/monob-5*zot/monob),
                                         kappa*(dt+dter*cskin) /
                                         (np.log(monob/zot)+5 -
                                          5*zot/monob+5*np.log(h_in[1]/monob) +
                                          h_in[1]/monob-1))))
805 806 807 808 809 810
                                # Zeng et al. 1998 (11-14)
        qsr = np.where(h_in[2]/monob < -0.465, kappa*(dq+dqer*cskin) /
                       (np.log((-0.465*monob)/zoq) -
                        psit_calc(-0.465, meth)+psit_calc(zoq/monob, meth) +
                        0.8*(np.power(0.465, -1/3) -
                             np.power(-h_in[2]/monob, -1/3))),
811
                       np.where(h_in[2]/monob < 0,
812 813 814
                                kappa*(dq+dqer*cskin)/(np.log(h_in[1]/zot) -
                                psit_calc(h_in[2]/monob, meth) +
                                psit_calc(zoq/monob, meth)),
815
                                np.where(h_in[2]/monob <= 1,
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
                                         kappa*(dq+dqer*cskin) /
                                         (np.log(h_in[1]/zoq)+5*h_in[2]/monob -
                                          5*zoq/monob),
                                         kappa*(dq+dqer*cskin)/
                                         (np.log(monob/zoq)+5-5*zoq/monob +
                                          5*np.log(h_in[2]/monob) +
                                          h_in[2]/monob-1))))
    elif (meth == "C30" or meth == "C35" or meth == "C40"):
        usr = (wind*kappa/(np.log(h_in[0]/zo)-psiu_26(h_in[0]/monob, meth)))
        tsr = ((dt+dter*cskin)*(kappa/(np.log(h_in[1]/zot) -
                                       psit_26(h_in[1]/monob))))
        qsr = ((dq+dqer*cskin)*(kappa/(np.log(h_in[2]/zoq) -
                                       psit_26(h_in[2]/monob))))
    else:
        usr = (wind*kappa/(np.log(h_in[0]/zo)-psim_calc(h_in[0]/monob, meth)))
        tsr = ct*wind*(dt+dter*cskin)/usr
        qsr = cq*wind*(dq+dqer*cskin)/usr
    return usr, tsr, qsr
sbiri's avatar
sbiri committed
834
# ---------------------------------------------------------------------