AirSeaFluxCode.py 25.5 KB
Newer Older
sbiri's avatar
sbiri committed
1
import numpy as np
2
import pandas as pd
sbiri's avatar
sbiri committed
3
import logging
sbiri's avatar
sbiri committed
4
from get_init import get_init
5
from hum_subs import (get_hum, gamma_moist)
sbiri's avatar
sbiri committed
6
from util_subs import (kappa, CtoK, get_heights)
7 8
from flux_subs import (cs_C35, cs_Beljaars, cs_ecmwf, wl_ecmwf,
                       get_gust, get_L, get_strs, psim_calc,
sbiri's avatar
sbiri committed
9
                       psit_calc, cdn_calc, cd_calc, ctcq_calc, ctcqn_calc)
sbiri's avatar
sbiri committed
10 11


12 13 14 15 16 17 18

def AirSeaFluxCode(spd, T, SST, lat=None, hum=None, P=None, hin=18, hout=10,
                   Rl=None, Rs=None, cskin=None, skin="C35", wl=0, gust=None,
                   meth="S80", qmeth="Buck2", tol=None, n=10, out=0, L=None):
    """
    Calculates turbulent surface fluxes using different parameterizations
    Calculates height adjusted values for spd, T, q
sbiri's avatar
sbiri committed
19 20 21 22 23 24 25 26 27 28 29

    Parameters
    ----------
        spd : float
            relative wind speed in m/s (is assumed as magnitude difference
            between wind and surface current vectors)
        T : float
            air temperature in K (will convert if < 200)
        SST : float
            sea surface temperature in K (will convert if < 200)
        lat : float
30 31 32
            latitude (deg), default 45deg
        hum : float
            humidity input switch 2x1 [x, values] default is relative humidity
33 34 35
            x='rh' : relative humidity in %
            x='q' : specific humidity (g/kg)
            x='Td' : dew point temperature (K)
sbiri's avatar
sbiri committed
36
        P : float
37
            air pressure (hPa), default 1013hPa
sbiri's avatar
sbiri committed
38
        hin : float
39
            sensor heights in m (array 3x1 or 3xn), default 18m
sbiri's avatar
sbiri committed
40 41 42 43 44 45
        hout : float
            output height, default is 10m
        Rl : float
            downward longwave radiation (W/m^2)
        Rs : float
            downward shortwave radiation (W/m^2)
sbiri's avatar
sbiri committed
46
        cskin : int
47 48
            0 switch cool skin adjustment off, else 1
            default is 1
49 50 51 52
        skin : str
            cool skin method option "C35", "ecmwf" or "Beljaars"
        wl : int
            warm layer correction default is 0, to switch on set to 1
53
        gust : int
54 55
            3x1 [x, beta, zi] x=1 to include the effect of gustiness, else 0
            beta gustiness parameter, beta=1 for UA, beta=1.2 for COARE
56
            zi PBL height (m) 600 for COARE, 1000 for UA and ecmwf, 800 default
57
            default for COARE [1, 1.2, 600]
58
            default for UA, ecmwf [1, 1, 1000]
59 60
            default else [1, 1.2, 800]
        meth : str
61 62
            "S80", "S88", "LP82", "YT96", "UA", "LY04", "C30", "C35", "C40",
            "ecmwf", "Beljaars"
63 64
        qmeth : str
            is the saturation evaporation method to use amongst
65 66
            "HylandWexler","Hardy","Preining","Wexler","GoffGratch","WMO",
            "MagnusTetens","Buck","Buck2","WMO2018","Sonntag","Bolton",
67 68 69 70 71 72 73
            "IAPWS","MurphyKoop"]
            default is Buck2
        tol : float
           4x1 or 7x1 [option, lim1-3 or lim1-6]
           option : 'flux' to set tolerance limits for fluxes only lim1-3
           option : 'ref' to set tolerance limits for height adjustment lim-1-3
           option : 'all' to set tolerance limits for both fluxes and height
74
                    adjustment lim1-6 ['all', 0.01, 0.01, 1e-05, 1e-3, 0.1, 0.1]
75
           default is tol=['flux', 1e-3, 0.1, 0.1]
sbiri's avatar
sbiri committed
76
        n : int
77 78 79 80
            number of iterations (defautl = 10)
        out : int
            set 0 to set points that have not converged to missing (default)
            set 1 to keep points
81
        L : str
sbiri's avatar
sbiri committed
82
           Monin-Obukhov length definition options
83
           "S80"  : default for S80, S88, LP82, YT96 and LY04
84 85
           "ecmwf" : following ecmwf (IFS Documentation cy46r1), default for
           ecmwf
sbiri's avatar
sbiri committed
86 87 88
    Returns
    -------
        res : array that contains
89
                       1. momentum flux (N/m^2)
sbiri's avatar
sbiri committed
90 91
                       2. sensible heat (W/m^2)
                       3. latent heat (W/m^2)
92
                       4. Monin-Obhukov length (mb)
sbiri's avatar
sbiri committed
93 94 95 96 97 98 99 100
                       5. drag coefficient (cd)
                       6. neutral drag coefficient (cdn)
                       7. heat exhange coefficient (ct)
                       8. neutral heat exhange coefficient (ctn)
                       9. moisture exhange coefficient (cq)
                       10. neutral moisture exhange coefficient (cqn)
                       11. star virtual temperature (tsrv)
                       12. star temperature (tsr)
101 102
                       13. star specific humidity (qsr)
                       14. star wind speed (usr)
sbiri's avatar
sbiri committed
103
                       15. momentum stability function (psim)
104 105
                       16. heat stability function (psit)
                       17. moisture stability function (psiq)
106
                       18. 10m neutral wind speed (u10n)
107 108 109 110 111 112
                       19. 10m neutral temperature (t10n)
                       20. 10m neutral virtual temperature (tv10n)
                       21. 10m neutral specific humidity (q10n)
                       22. surface roughness length (zo)
                       23. heat roughness length (zot)
                       24. moisture roughness length (zoq)
113 114 115
                       25. velocity at reference height (uref)
                       26. temperature at reference height (tref)
                       27. specific humidity at reference height (qref)
116
                       28. number of iterations until convergence
117 118
                       29. cool-skin temperature depression (dter)
                       30. cool-skin humidity depression (dqer)
119 120 121 122 123 124
                       31. warm layer correction (dtwl)
                       32. specific humidity of air (qair)
                       33. specific humidity at sea surface (qsea)
                       34. downward longwave radiation (Rl)
                       35. downward shortwave radiation (Rs)
                       36. downward net longwave radiation (Rnl)
125
                       37. flag ("n": normal, "o": out of nominal range,
126
                                 "u": u10n<0, "q":q10n<0
127
                                 "m": missing, "l": z/L<0.01,
128
                                 "i": convergence fail at n)
129 130 131
                       38. gust wind speed (ug)
                       39. Bulk Richardson number (Rib)
                       40. relative humidity (rh)
132

133
    2021 / Author S. Biri
sbiri's avatar
sbiri committed
134 135 136
    """
    logging.basicConfig(filename='flux_calc.log',
                        format='%(asctime)s %(message)s',level=logging.INFO)
137 138
    logging.captureWarnings(True)
    #  check input values and set defaults where appropriate
139 140 141 142
    lat, P, Rl, Rs, cskin, skin, wl, gust, tol, L = get_init(spd, T, SST, lat,
                                                              P, Rl, Rs, cskin,
                                                              skin, wl, gust, L,
                                                              tol, meth, qmeth)
143
    flag = np.ones(spd.shape, dtype="object")*"n"
144 145 146
    flag = np.where(np.isnan(spd+T+SST+lat+hum[1]+P+Rs) & (flag == "n"),
                    "m", np.where(np.isnan(spd+T+SST+lat+hum[1]+P+Rs) &
                                  (flag != "n"), flag+[","]+["m"], flag))
147
    ref_ht = 10        # reference height
148 149
    h_in = get_heights(hin, len(spd))  # heights of input measurements/fields
    h_out = get_heights(hout, 1)       # desired height of output variables
150
    logging.info('method %s, inputs: lat: %s | P: %s | Rl: %s |'
151
                 ' Rs: %s | gust: %s | cskin: %s | L : %s', meth,
152
                 np.nanmedian(lat), np.nanmedian(P), np.nanmedian(Rl),
153
                 np.nanmedian(Rs), gust, cskin, L)
154
    #  set up/calculate temperatures and specific humidities
155
    th = np.where(T < 200, (np.copy(T)+CtoK) *
sbiri's avatar
sbiri committed
156 157
                  np.power(1000/P,287.1/1004.67),
                  np.copy(T)*np.power(1000/P,287.1/1004.67))  # potential T
158
    sst = np.where(SST < 200, np.copy(SST)+CtoK, np.copy(SST))
159
    qair, qsea = get_hum(hum, T, sst, P, qmeth)
160
    Rb = np.empty(sst.shape)
161 162 163 164
    #lapse rate
    tlapse = gamma_moist(SST, T, qair/1000)
    Ta = np.where(T < 200, np.copy(T)+CtoK+tlapse*h_in[1],
                  np.copy(T)+tlapse*h_in[1])  # convert to Kelvin if needed
165 166
    logging.info('method %s and q method %s | qsea:%s, qair:%s', meth, qmeth,
                  np.nanmedian(qsea), np.nanmedian(qair))
sbiri's avatar
sbiri committed
167 168
    if (np.all(np.isnan(qsea)) or np.all(np.isnan(qair))):
        print("qsea and qair cannot be nan")
169

sbiri's avatar
sbiri committed
170 171
    dt = Ta - sst
    dq = qair - qsea
172

173
    #  first guesses
sbiri's avatar
sbiri committed
174
    t10n, q10n = np.copy(Ta), np.copy(qair)
175
    tv10n = t10n*(1+0.6077*q10n)
sbiri's avatar
sbiri committed
176
    #  Zeng et al. 1998
177 178
    tv=th*(1+0.6077*qair)   # virtual potential T
    dtv=dt*(1+0.6077*qair)+0.6077*th*dq
sbiri's avatar
sbiri committed
179
    # ------------
180
    rho = P*100/(287.1*tv10n)
181
    lv = (2.501-0.00237*(sst-CtoK))*1e6
sbiri's avatar
sbiri committed
182 183
    cp = 1004.67*(1 + 0.00084*qsea)
    u10n = np.copy(spd)
184 185
    cd10n = cdn_calc(u10n, Ta, None, lat, meth)
    ct10n, ct, cq10n, cq = (np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan,
186 187 188
                        np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan)
    psim, psit, psiq = (np.zeros(spd.shape), np.zeros(spd.shape),
                        np.zeros(spd.shape))
189
    cd = cd_calc(cd10n, h_in[0], ref_ht, psim)
190 191
    tsr, tsrv = np.zeros(spd.shape), np.zeros(spd.shape)
    qsr = np.zeros(spd.shape)
sbiri's avatar
sbiri committed
192
    # cskin parameters
193
    tkt = 0.001*np.ones(T.shape)
sbiri's avatar
sbiri committed
194
    dter = np.ones(T.shape)*0.3
195
    dqer = dter*0.622*lv*qsea/(287.1*np.power(sst, 2))
196 197 198 199
    Rnl = 0.97*(5.67e-8*np.power(sst-0.3*cskin, 4)-Rl)
    Qs = 0.945*Rs
    dtwl = np.ones(T.shape)*0.3
    skt = np.copy(sst)
200
    # gustiness adjustment
201
    if (gust[0] == 1 and meth == "UA"):
202 203
        wind = np.where(dtv >= 0, np.where(spd > 0.1, spd, 0.1),
                        np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2)))
204
    elif (gust[0] == 1):
205
        wind = np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2))
206
    elif (gust[0] == 0):
207
        wind = np.copy(spd)
208
    # stars and roughness lengths
209 210 211 212
    usr = np.sqrt(cd*np.power(wind, 2))
    zo = 0.0001*np.ones(spd.shape)
    zot, zoq = 0.0001*np.ones(spd.shape), 0.0001*np.ones(spd.shape)
    monob = -100*np.ones(spd.shape)  # Monin-Obukhov length
213 214
    tsr = (dt+dter*cskin-dtwl*wl)*kappa/(np.log(h_in[1]/zot) -
                                         psit_calc(h_in[1]/monob, meth))
sbiri's avatar
sbiri committed
215
    qsr = (dq+dqer*cskin)*kappa/(np.log(h_in[2]/zoq) -
216
                                 psit_calc(h_in[2]/monob, meth))
217
    # set-up to feed into iteration loop
218 219
    it, ind = 0, np.where(spd > 0)
    ii, itera = True, np.zeros(spd.shape)*np.nan
220 221 222
    tau = 0.05*np.ones(spd.shape)
    sensible = 5*np.ones(spd.shape)
    latent = 65*np.ones(spd.shape)
223
    #  iteration loop
sbiri's avatar
sbiri committed
224 225 226 227
    while np.any(ii):
        it += 1
        if it > n:
            break
228 229 230 231 232 233 234
        if (tol[0] == 'flux'):
            old = np.array([np.copy(tau), np.copy(sensible), np.copy(latent)])
        elif (tol[0] == 'ref'):
            old = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n)])
        elif (tol[0] == 'all'):
            old = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n),
                            np.copy(tau), np.copy(sensible), np.copy(latent)])
235 236
        cd10n[ind] = cdn_calc(u10n[ind], Ta[ind], None, lat[ind], meth)
        if (np.all(np.isnan(cd10n))):
237
            break
238 239
            logging.info('break %s at iteration %s cd10n<0', meth, it)
        zo[ind] = ref_ht/np.exp(kappa/np.sqrt(cd10n[ind]))
240
        psim[ind] = psim_calc(h_in[0, ind]/monob[ind], meth)
241 242 243 244
        cd[ind] = cd_calc(cd10n[ind], h_in[0, ind], ref_ht, psim[ind])
        ct10n[ind], cq10n[ind] = ctcqn_calc(h_in[1, ind]/monob[ind],
                                            cd10n[ind], u10n[ind], zo[ind],
                                            Ta[ind], meth)
245
        zot[ind] = ref_ht/(np.exp(np.power(kappa, 2) /
246
                           (ct10n[ind]*np.log(ref_ht/zo[ind]))))
247
        zoq[ind] = ref_ht/(np.exp(np.power(kappa, 2) /
248
                           (cq10n[ind]*np.log(ref_ht/zo[ind]))))
249 250
        psit[ind] = psit_calc(h_in[1, ind]/monob[ind], meth)
        psiq[ind] = psit_calc(h_in[2, ind]/monob[ind], meth)
251
        ct[ind], cq[ind] = ctcq_calc(cd10n[ind], cd[ind], ct10n[ind], cq10n[ind],
252 253
                                      h_in[1, ind], h_in[2, ind], ref_ht,
                                      psit[ind], psiq[ind])
sbiri's avatar
sbiri committed
254 255 256
        usr[ind], tsr[ind], qsr[ind] = get_strs(h_in[:, ind], monob[ind],
                                                wind[ind], zo[ind], zot[ind],
                                                zoq[ind], dt[ind], dq[ind],
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
                                                dter[ind], dqer[ind], dtwl[ind],
                                                ct[ind], cq[ind], cskin, wl,
                                                meth)
        if ((cskin == 1) and (wl == 0)):
            if (skin == "C35"):
                dter[ind], dqer[ind], tkt[ind] = cs_C35(sst[ind], qsea[ind],
                                                        rho[ind], Rs[ind],
                                                        Rnl[ind],
                                                        cp[ind], lv[ind],
                                                        np.copy(tkt[ind]),
                                                        usr[ind], tsr[ind],
                                                        qsr[ind], lat[ind])
            elif (skin == "ecmwf"):
                dter[ind] = cs_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     sst[ind], lat[ind])
                dqer[ind] = (dter[ind]*0.622*lv[ind]*qsea[ind] /
                             (287.1*np.power(sst[ind], 2)))
            elif (skin == "Beljaars"):
                Qs[ind], dter[ind] = cs_Beljaars(rho[ind], Rs[ind], Rnl[ind],
                                                 cp[ind], lv[ind], usr[ind],
                                                 tsr[ind], qsr[ind], lat[ind],
                                                 np.copy(Qs[ind]))
                dqer = dter*0.622*lv*qsea/(287.1*np.power(sst, 2))
        elif ((cskin == 1) and (wl == 1)):
            if (skin == "C35"):
                dter[ind], dqer[ind], tkt[ind] = cs_C35(sst[ind], qsea[ind],
                                                        rho[ind], Rs[ind],
                                                        Rnl[ind],
                                                        cp[ind], lv[ind],
                                                        np.copy(tkt[ind]),
                                                        usr[ind], tsr[ind],
                                                        qsr[ind], lat[ind])
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
            elif (skin == "ecmwf"):
                dter[ind] = cs_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     sst[ind], lat[ind])
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
                dqer[ind] = (dter[ind]*0.622*lv[ind]*qsea[ind] /
                             (287.1*np.power(skt[ind], 2)))
            elif (skin == "Beljaars"):
                Qs[ind], dter[ind] = cs_Beljaars(rho[ind], Rs[ind], Rnl[ind],
                                                 cp[ind], lv[ind], usr[ind],
                                                 tsr[ind], qsr[ind], lat[ind],
                                                 np.copy(Qs[ind]))
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
                dqer = dter*0.622*lv*qsea/(287.1*np.power(skt, 2))
317 318 319
        else:
           dter[ind] = np.zeros(sst[ind].shape)
           dqer[ind] = np.zeros(sst[ind].shape)
320
           tkt[ind] = 0.001*np.ones(T[ind].shape)
sbiri's avatar
sbiri committed
321 322 323 324 325 326
        logging.info('method %s | dter = %s | dqer = %s | tkt = %s | Rnl = %s '
                     '| usr = %s | tsr = %s | qsr = %s', meth,
                     np.nanmedian(dter), np.nanmedian(dqer),
                     np.nanmedian(tkt), np.nanmedian(Rnl),
                     np.nanmedian(usr), np.nanmedian(tsr),
                     np.nanmedian(qsr))
327 328
        Rnl[ind] = 0.97*(5.67e-8*np.power(sst[ind] -
                          dter[ind]*cskin, 4)-Rl[ind])
329 330 331 332
        t10n[ind] = (Ta[ind] -
                     tsr[ind]/kappa*(np.log(h_in[1, ind]/ref_ht)-psit[ind]))
        q10n[ind] = (qair[ind] -
                     qsr[ind]/kappa*(np.log(h_in[2, ind]/ref_ht)-psiq[ind]))
333 334 335 336 337 338 339 340
        tv10n[ind] = t10n[ind]*(1+0.6077*q10n[ind])
        tsrv[ind], monob[ind], Rb[ind] = get_L(L, lat[ind], usr[ind], tsr[ind],
                                               qsr[ind], h_in[:, ind], Ta[ind],
                                               sst[ind]-dter[ind]*cskin+dtwl[ind]*wl,
                                               qair[ind], qsea[ind], wind[ind],
                                               np.copy(monob[ind]), psim[ind],
                                               meth)
        # sst[ind]-dter[ind]*cskin+dtwl[ind]*wl
341 342 343
        psim[ind] = psim_calc(h_in[0, ind]/monob[ind], meth)
        psit[ind] = psit_calc(h_in[1, ind]/monob[ind], meth)
        psiq[ind] = psit_calc(h_in[2, ind]/monob[ind], meth)
344
        if (gust[0] == 1 and meth == "UA"):
sbiri's avatar
sbiri committed
345
            wind[ind] = np.where(dtv[ind] >= 0, np.where(spd[ind] > 0.1,
346 347 348 349 350 351 352
                                  spd[ind], 0.1),
                                  np.sqrt(np.power(np.copy(spd[ind]), 2) +
                                  np.power(get_gust(gust[1], tv[ind], usr[ind],
                                  tsrv[ind], gust[2], lat[ind]), 2)))
                                  # Zeng et al. 1998 (20)
        elif (gust[0] == 1 and (meth == "C30" or meth == "C35" or
                                meth == "C40")):
sbiri's avatar
sbiri committed
353
            wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) +
354 355 356
                                np.power(get_gust(gust[1], Ta[ind], usr[ind],
                                tsrv[ind], gust[2], lat[ind]), 2))
        elif (gust[0] == 1):
357
            wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) +
358 359 360
                                np.power(get_gust(gust[1], Ta[ind], usr[ind],
                                tsrv[ind], gust[2], lat[ind]), 2))
        elif (gust[0] == 0):
361
            wind[ind] = np.copy(spd[ind])
362 363
        u10n[ind] = wind[ind]-usr[ind]/kappa*(np.log(h_in[0, ind]/10) -
                                              psim[ind])
364 365 366
        flag = np.where((u10n < 0) & (flag == "n"), "u",
                        np.where((u10n < 0) & (flag != "n"), flag+[","]+["u"],
                                 flag))
sbiri's avatar
sbiri committed
367
        u10n = np.where(u10n < 0, np.nan, u10n)
sbiri's avatar
sbiri committed
368
        itera[ind] = np.ones(1)*it
369 370 371 372 373 374 375 376 377 378 379 380 381
        sensible = -rho*cp*usr*tsr
        latent = -rho*lv*usr*qsr
        if (gust[0] == 1):
            tau = rho*np.power(usr, 2)*(spd/wind)
        elif (gust[0] == 0):
            tau = rho*np.power(usr, 2)
        if (tol[0] == 'flux'):
            new = np.array([np.copy(tau), np.copy(sensible), np.copy(latent)])
        elif (tol[0] == 'ref'):
            new = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n)])
        elif (tol[0] == 'all'):
            new = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n),
                            np.copy(tau), np.copy(sensible), np.copy(latent)])
382
        d = np.abs(new-old)
383 384
        if (tol[0] == 'flux'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
385
                            (d[2, :] > tol[3]))
386 387
        elif (tol[0] == 'ref'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
388
                            (d[2, :] > tol[3]))
389 390
        elif (tol[0] == 'all'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
391 392
                            (d[2, :] > tol[3])+(d[3, :] > tol[4]) +
                            (d[4, :] > tol[5])+(d[5, :] > tol[6]))
393 394
        if (ind[0].size == 0):
            ii = False
sbiri's avatar
sbiri committed
395
        else:
396
            ii = True
397
    itera[ind] = -1
398
    # itera = np.where(itera > n, -1, itera)
399
    logging.info('method %s | # of iterations:%s', meth, it)
sbiri's avatar
sbiri committed
400
    logging.info('method %s | # of points that did not converge :%s', meth,
401
                  ind[0].size)
sbiri's avatar
sbiri committed
402
    # calculate output parameters
403
    rho = (0.34838*P)/(tv10n)
sbiri's avatar
sbiri committed
404
    t10n = t10n-(273.16+tlapse*ref_ht)
405 406 407 408
    # solve for zo from cd10n
    zo = ref_ht/np.exp(kappa/np.sqrt(cd10n))
    # adjust neutral cdn at any output height
    cdn = np.power(kappa/np.log(hout/zo), 2)
sbiri's avatar
sbiri committed
409 410
    cd = cd_calc(cdn, h_out[0], h_out[0], psim)
    # solve for zot, zoq from ct10n, cq10n
411 412 413
    zot = ref_ht/(np.exp(kappa**2/(ct10n*np.log(ref_ht/zo))))
    zoq = ref_ht/(np.exp(kappa**2/(cq10n*np.log(ref_ht/zo))))
    # adjust neutral ctn, cqn at any output height
sbiri's avatar
sbiri committed
414 415 416
    ctn =np.power(kappa, 2)/(np.log(h_out[0]/zo)*np.log(h_out[1]/zot))
    cqn =np.power(kappa, 2)/(np.log(h_out[0]/zo)*np.log(h_out[2]/zoq))
    ct, cq = ctcq_calc(cdn, cd, ctn, cqn, h_out[1], h_out[2], h_out[1],
417
                       psit, psiq)
418 419 420 421
    uref = (spd-usr/kappa*(np.log(h_in[0]/h_out[0])-psim +
            psim_calc(h_out[0]/monob, meth)))
    tref = (Ta-tsr/kappa*(np.log(h_in[1]/h_out[1])-psit +
            psit_calc(h_out[0]/monob, meth)))
422
    tref = tref-(CtoK+tlapse*h_out[1])
423 424
    qref = (qair-qsr/kappa*(np.log(h_in[2]/h_out[2]) -
            psit+psit_calc(h_out[2]/monob, meth)))
425 426 427 428 429 430 431 432 433
    flag = np.where((q10n < 0) & (flag == "n"), "q",
                    np.where((q10n < 0) & (flag != "n"), flag+[","]+["q"],
                             flag))
    flag = np.where((np.abs(hin[0]/monob) < 0.01) & (flag == "n"), "l",
                    np.where((np.abs(hin[0]/monob) < 0.01) & (flag != "n"),
                             flag+[","]+["l"], flag))
    flag = np.where((itera == -1) & (flag == "n"), "i",
                    np.where((itera == -1) & (flag != "n"), flag+[","]+["i"],
                             flag))
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
    if (meth == "S80"):
        flag = np.where(((u10n < 6) | (u10n > 22)) & (flag == "n"), "o",
                        np.where(((u10n < 6) | (u10n > 22)) & (flag != "n"),
                                 flag+[","]+["o"], flag))
    elif (meth == "LP82"):
        flag = np.where(((u10n < 3) | (u10n > 25)) & (flag == "n"), "o",
                        np.where(((u10n < 3) | (u10n > 25)) & (flag != "n"),
                                 flag+[","]+["o"], flag))
    elif (meth == "YT96"):
        flag = np.where(((u10n < 3) | (u10n > 26)) & (flag == "n"), "o",
                        np.where(((u10n < 3) | (u10n > 26)) & (flag != "n"),
                                 flag+[","]+["o"], flag))
    elif (meth == "UA"):
        flag = np.where(((u10n < 0.5) | (u10n > 18)) & (flag == "n"), "o",
                        np.where(((u10n < 0.5) | (u10n > 18)) & (flag != "n"),
                                 flag+[","]+["o"], flag))
    elif (meth == "LY04"):
        flag = np.where((u10n < 0.5) & (flag == "n"), "o",
                        np.where((u10n < 0.5) & (flag != "n"),
                                 flag+[","]+["o"], flag))
    if (hum == None):
        rh = np.ones(sst.shape)*80
    elif (hum[0] == 'rh'):
        rh = hum[1]
        rh = np.where(rh > 100, np.nan, rh)
    elif (hum[0] == 'Td'):
        Td = hum[1] # dew point temperature (K)
        Td = np.where(Td < 200, np.copy(Td)+CtoK, np.copy(Td))
        T = np.where(T < 200, np.copy(T)+CtoK, np.copy(T))
        esd = 611.21*np.exp(17.502*((Td-273.16)/(Td-32.19)))
        es = 611.21*np.exp(17.502*((T-273.16)/(T-32.19)))
        rh = 100*esd/es
        rh = np.where(rh > 100, np.nan, rh)

    res = np.zeros((39, len(spd)))
sbiri's avatar
sbiri committed
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
    res[0][:] = tau
    res[1][:] = sensible
    res[2][:] = latent
    res[3][:] = monob
    res[4][:] = cd
    res[5][:] = cdn
    res[6][:] = ct
    res[7][:] = ctn
    res[8][:] = cq
    res[9][:] = cqn
    res[10][:] = tsrv
    res[11][:] = tsr
    res[12][:] = qsr
    res[13][:] = usr
    res[14][:] = psim
    res[15][:] = psit
485 486 487 488 489 490 491 492
    res[16][:] = psiq
    res[17][:] = u10n
    res[18][:] = t10n
    res[19][:] = tv10n
    res[20][:] = q10n
    res[21][:] = zo
    res[22][:] = zot
    res[23][:] = zoq
493 494 495
    res[24][:] = uref
    res[25][:] = tref
    res[26][:] = qref
496
    res[27][:] = itera
497 498
    res[28][:] = dter
    res[29][:] = dqer
499 500 501 502 503 504
    res[30][:] = dtwl
    res[31][:] = qair
    res[32][:] = qsea
    res[33][:] = Rl
    res[34][:] = Rs
    res[35][:] = Rnl
505 506 507
    res[36][:] = np.sqrt(np.power(wind, 2)-np.power(spd, 2))
    res[37][:] = Rb
    res[38][:] = rh
508

509 510 511
    if (out == 0):
        res[:, ind] = np.nan
    # set missing values where data have non acceptable values
512 513
    res = np.asarray([np.where((spd < 0) | (q10n < 0), np.nan,
                               res[i][:]) for i in range(39)])
514 515 516
    # output with pandas
    resAll = pd.DataFrame(data=res.T, index=range(len(spd)),
                        columns=["tau", "shf", "lhf", "L", "cd", "cdn", "ct",
517 518 519 520 521 522
                                 "ctn", "cq", "cqn", "tsrv", "tsr", "qsr",
                                 "usr", "psim", "psit","psiq", "u10n", "t10n",
                                 "tv10n", "q10n", "zo", "zot", "zoq", "uref",
                                 "tref", "qref", "iteration", "dter", "dqer",
                                 "dtwl", "qair", "qsea", "Rl", "Rs", "Rnl",
                                 "ug", "Rib", "rh"])
523 524
    resAll["flag"] = flag
    return resAll
525