AirSeaFluxCode.py 25.6 KB
Newer Older
sbiri's avatar
sbiri committed
1
import numpy as np
2
import pandas as pd
sbiri's avatar
sbiri committed
3
import logging
sbiri's avatar
sbiri committed
4
from get_init import get_init
5
from hum_subs import (get_hum, gamma_moist)
sbiri's avatar
sbiri committed
6
from util_subs import (kappa, CtoK, get_heights)
7 8
from flux_subs import (cs_C35, cs_Beljaars, cs_ecmwf, wl_ecmwf,
                       get_gust, get_L, get_strs, psim_calc,
sbiri's avatar
sbiri committed
9
                       psit_calc, cdn_calc, cd_calc, ctcq_calc, ctcqn_calc)
sbiri's avatar
sbiri committed
10 11


12 13 14 15 16 17 18

def AirSeaFluxCode(spd, T, SST, lat=None, hum=None, P=None, hin=18, hout=10,
                   Rl=None, Rs=None, cskin=None, skin="C35", wl=0, gust=None,
                   meth="S80", qmeth="Buck2", tol=None, n=10, out=0, L=None):
    """
    Calculates turbulent surface fluxes using different parameterizations
    Calculates height adjusted values for spd, T, q
sbiri's avatar
sbiri committed
19 20 21 22 23 24 25 26 27 28 29

    Parameters
    ----------
        spd : float
            relative wind speed in m/s (is assumed as magnitude difference
            between wind and surface current vectors)
        T : float
            air temperature in K (will convert if < 200)
        SST : float
            sea surface temperature in K (will convert if < 200)
        lat : float
30 31 32
            latitude (deg), default 45deg
        hum : float
            humidity input switch 2x1 [x, values] default is relative humidity
33 34 35
            x='rh' : relative humidity in %
            x='q' : specific humidity (g/kg)
            x='Td' : dew point temperature (K)
sbiri's avatar
sbiri committed
36
        P : float
37
            air pressure (hPa), default 1013hPa
sbiri's avatar
sbiri committed
38
        hin : float
39
            sensor heights in m (array 3x1 or 3xn), default 18m
sbiri's avatar
sbiri committed
40 41 42 43 44 45
        hout : float
            output height, default is 10m
        Rl : float
            downward longwave radiation (W/m^2)
        Rs : float
            downward shortwave radiation (W/m^2)
sbiri's avatar
sbiri committed
46
        cskin : int
47 48
            0 switch cool skin adjustment off, else 1
            default is 1
49 50 51 52
        skin : str
            cool skin method option "C35", "ecmwf" or "Beljaars"
        wl : int
            warm layer correction default is 0, to switch on set to 1
53
        gust : int
54 55
            3x1 [x, beta, zi] x=1 to include the effect of gustiness, else 0
            beta gustiness parameter, beta=1 for UA, beta=1.2 for COARE
56
            zi PBL height (m) 600 for COARE, 1000 for UA and ecmwf, 800 default
57
            default for COARE [1, 1.2, 600]
58
            default for UA, ecmwf [1, 1, 1000]
59 60
            default else [1, 1.2, 800]
        meth : str
61 62
            "S80", "S88", "LP82", "YT96", "UA", "LY04", "C30", "C35", "C40",
            "ecmwf", "Beljaars"
63 64
        qmeth : str
            is the saturation evaporation method to use amongst
65 66
            "HylandWexler","Hardy","Preining","Wexler","GoffGratch","WMO",
            "MagnusTetens","Buck","Buck2","WMO2018","Sonntag","Bolton",
67 68 69 70 71 72 73
            "IAPWS","MurphyKoop"]
            default is Buck2
        tol : float
           4x1 or 7x1 [option, lim1-3 or lim1-6]
           option : 'flux' to set tolerance limits for fluxes only lim1-3
           option : 'ref' to set tolerance limits for height adjustment lim-1-3
           option : 'all' to set tolerance limits for both fluxes and height
74
                    adjustment lim1-6 ['all', 0.01, 0.01, 1e-05, 1e-3, 0.1, 0.1]
75
           default is tol=['flux', 1e-3, 0.1, 0.1]
sbiri's avatar
sbiri committed
76
        n : int
77 78 79 80
            number of iterations (defautl = 10)
        out : int
            set 0 to set points that have not converged to missing (default)
            set 1 to keep points
81
        L : str
sbiri's avatar
sbiri committed
82
           Monin-Obukhov length definition options
83
           "S80"  : default for S80, S88, LP82, YT96 and LY04
84 85
           "ecmwf" : following ecmwf (IFS Documentation cy46r1), default for
           ecmwf
sbiri's avatar
sbiri committed
86 87 88
    Returns
    -------
        res : array that contains
89
                       1. momentum flux (N/m^2)
sbiri's avatar
sbiri committed
90 91
                       2. sensible heat (W/m^2)
                       3. latent heat (W/m^2)
92
                       4. Monin-Obhukov length (mb)
sbiri's avatar
sbiri committed
93 94 95 96 97 98 99 100
                       5. drag coefficient (cd)
                       6. neutral drag coefficient (cdn)
                       7. heat exhange coefficient (ct)
                       8. neutral heat exhange coefficient (ctn)
                       9. moisture exhange coefficient (cq)
                       10. neutral moisture exhange coefficient (cqn)
                       11. star virtual temperature (tsrv)
                       12. star temperature (tsr)
101 102
                       13. star specific humidity (qsr)
                       14. star wind speed (usr)
sbiri's avatar
sbiri committed
103
                       15. momentum stability function (psim)
104 105
                       16. heat stability function (psit)
                       17. moisture stability function (psiq)
106
                       18. 10m neutral wind speed (u10n)
107 108 109 110 111 112
                       19. 10m neutral temperature (t10n)
                       20. 10m neutral virtual temperature (tv10n)
                       21. 10m neutral specific humidity (q10n)
                       22. surface roughness length (zo)
                       23. heat roughness length (zot)
                       24. moisture roughness length (zoq)
113 114 115
                       25. velocity at reference height (uref)
                       26. temperature at reference height (tref)
                       27. specific humidity at reference height (qref)
116
                       28. number of iterations until convergence
117 118
                       29. cool-skin temperature depression (dter)
                       30. cool-skin humidity depression (dqer)
119 120 121 122 123 124
                       31. warm layer correction (dtwl)
                       32. specific humidity of air (qair)
                       33. specific humidity at sea surface (qsea)
                       34. downward longwave radiation (Rl)
                       35. downward shortwave radiation (Rs)
                       36. downward net longwave radiation (Rnl)
125
                       37. flag ("n": normal, "o": out of nominal range,
126
                                 "u": u10n<0, "q":q10n<0
127
                                 "m": missing, "l": z/L<0.01,
128
                                 "i": convergence fail at n)
129 130 131
                       38. gust wind speed (ug)
                       39. Bulk Richardson number (Rib)
                       40. relative humidity (rh)
132

133
    2021 / Author S. Biri
sbiri's avatar
sbiri committed
134 135 136
    """
    logging.basicConfig(filename='flux_calc.log',
                        format='%(asctime)s %(message)s',level=logging.INFO)
137 138
    logging.captureWarnings(True)
    #  check input values and set defaults where appropriate
139 140 141 142 143 144 145
    lat, hum, P, Rl, Rs, cskin, skin, wl, gust, tol, L = get_init(spd, T, SST,
                                                                  lat, hum, P,
                                                                  Rl, Rs,
                                                                  cskin, skin,
                                                                  wl, gust, L,
                                                                  tol, meth,
                                                                  qmeth)
146
    flag = np.ones(spd.shape, dtype="object")*"n"
147
    flag = np.where(np.isnan(spd+T+SST+lat+hum[1]+P+Rs), "m", flag)
148
    ref_ht = 10        # reference height
149 150
    h_in = get_heights(hin, len(spd))  # heights of input measurements/fields
    h_out = get_heights(hout, 1)       # desired height of output variables
151
    logging.info('method %s, inputs: lat: %s | P: %s | Rl: %s |'
152
                 ' Rs: %s | gust: %s | cskin: %s | L : %s', meth,
153
                 np.nanmedian(lat), np.nanmedian(P), np.nanmedian(Rl),
154
                 np.nanmedian(Rs), gust, cskin, L)
155
    #  set up/calculate temperatures and specific humidities
156
    th = np.where(T < 200, (np.copy(T)+CtoK) *
sbiri's avatar
sbiri committed
157 158
                  np.power(1000/P,287.1/1004.67),
                  np.copy(T)*np.power(1000/P,287.1/1004.67))  # potential T
159
    sst = np.where(SST < 200, np.copy(SST)+CtoK, np.copy(SST))
160
    qair, qsea = get_hum(hum, T, sst, P, qmeth)
161
    Rb = np.empty(sst.shape)
162 163 164 165
    #lapse rate
    tlapse = gamma_moist(SST, T, qair/1000)
    Ta = np.where(T < 200, np.copy(T)+CtoK+tlapse*h_in[1],
                  np.copy(T)+tlapse*h_in[1])  # convert to Kelvin if needed
166 167
    logging.info('method %s and q method %s | qsea:%s, qair:%s', meth, qmeth,
                  np.nanmedian(qsea), np.nanmedian(qair))
sbiri's avatar
sbiri committed
168 169
    if (np.all(np.isnan(qsea)) or np.all(np.isnan(qair))):
        print("qsea and qair cannot be nan")
170

sbiri's avatar
sbiri committed
171 172
    dt = Ta - sst
    dq = qair - qsea
173

174
    #  first guesses
sbiri's avatar
sbiri committed
175
    t10n, q10n = np.copy(Ta), np.copy(qair)
176
    tv10n = t10n*(1+0.6077*q10n)
sbiri's avatar
sbiri committed
177
    #  Zeng et al. 1998
178 179
    tv=th*(1+0.6077*qair)   # virtual potential T
    dtv=dt*(1+0.6077*qair)+0.6077*th*dq
sbiri's avatar
sbiri committed
180
    # ------------
181
    rho = P*100/(287.1*tv10n)
182
    lv = (2.501-0.00237*(sst-CtoK))*1e6
sbiri's avatar
sbiri committed
183 184
    cp = 1004.67*(1 + 0.00084*qsea)
    u10n = np.copy(spd)
185 186
    cd10n = cdn_calc(u10n, Ta, None, lat, meth)
    ct10n, ct, cq10n, cq = (np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan,
187 188 189
                        np.zeros(spd.shape)*np.nan, np.zeros(spd.shape)*np.nan)
    psim, psit, psiq = (np.zeros(spd.shape), np.zeros(spd.shape),
                        np.zeros(spd.shape))
190
    cd = cd_calc(cd10n, h_in[0], ref_ht, psim)
191 192
    tsr, tsrv = np.zeros(spd.shape), np.zeros(spd.shape)
    qsr = np.zeros(spd.shape)
sbiri's avatar
sbiri committed
193
    # cskin parameters
194
    tkt = 0.001*np.ones(T.shape)
sbiri's avatar
sbiri committed
195
    dter = np.ones(T.shape)*0.3
196
    dqer = dter*0.622*lv*qsea/(287.1*np.power(sst, 2))
197 198 199 200
    Rnl = 0.97*(5.67e-8*np.power(sst-0.3*cskin, 4)-Rl)
    Qs = 0.945*Rs
    dtwl = np.ones(T.shape)*0.3
    skt = np.copy(sst)
201
    # gustiness adjustment
202
    if (gust[0] == 1 and meth == "UA"):
203 204
        wind = np.where(dtv >= 0, np.where(spd > 0.1, spd, 0.1),
                        np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2)))
205
    elif (gust[0] == 1):
206
        wind = np.sqrt(np.power(np.copy(spd), 2)+np.power(0.5, 2))
207
    elif (gust[0] == 0):
208
        wind = np.copy(spd)
209
    # stars and roughness lengths
210 211 212 213
    usr = np.sqrt(cd*np.power(wind, 2))
    zo = 0.0001*np.ones(spd.shape)
    zot, zoq = 0.0001*np.ones(spd.shape), 0.0001*np.ones(spd.shape)
    monob = -100*np.ones(spd.shape)  # Monin-Obukhov length
214 215
    tsr = (dt+dter*cskin-dtwl*wl)*kappa/(np.log(h_in[1]/zot) -
                                         psit_calc(h_in[1]/monob, meth))
sbiri's avatar
sbiri committed
216
    qsr = (dq+dqer*cskin)*kappa/(np.log(h_in[2]/zoq) -
217
                                 psit_calc(h_in[2]/monob, meth))
218
    # set-up to feed into iteration loop
219 220
    it, ind = 0, np.where(spd > 0)
    ii, itera = True, np.zeros(spd.shape)*np.nan
221 222 223
    tau = 0.05*np.ones(spd.shape)
    sensible = 5*np.ones(spd.shape)
    latent = 65*np.ones(spd.shape)
224
    #  iteration loop
sbiri's avatar
sbiri committed
225 226 227 228
    while np.any(ii):
        it += 1
        if it > n:
            break
229 230 231 232 233 234 235
        if (tol[0] == 'flux'):
            old = np.array([np.copy(tau), np.copy(sensible), np.copy(latent)])
        elif (tol[0] == 'ref'):
            old = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n)])
        elif (tol[0] == 'all'):
            old = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n),
                            np.copy(tau), np.copy(sensible), np.copy(latent)])
236 237
        cd10n[ind] = cdn_calc(u10n[ind], Ta[ind], None, lat[ind], meth)
        if (np.all(np.isnan(cd10n))):
238
            break
239 240
            logging.info('break %s at iteration %s cd10n<0', meth, it)
        zo[ind] = ref_ht/np.exp(kappa/np.sqrt(cd10n[ind]))
241
        psim[ind] = psim_calc(h_in[0, ind]/monob[ind], meth)
242 243 244 245
        cd[ind] = cd_calc(cd10n[ind], h_in[0, ind], ref_ht, psim[ind])
        ct10n[ind], cq10n[ind] = ctcqn_calc(h_in[1, ind]/monob[ind],
                                            cd10n[ind], u10n[ind], zo[ind],
                                            Ta[ind], meth)
246
        zot[ind] = ref_ht/(np.exp(np.power(kappa, 2) /
247
                           (ct10n[ind]*np.log(ref_ht/zo[ind]))))
248
        zoq[ind] = ref_ht/(np.exp(np.power(kappa, 2) /
249
                           (cq10n[ind]*np.log(ref_ht/zo[ind]))))
250 251
        psit[ind] = psit_calc(h_in[1, ind]/monob[ind], meth)
        psiq[ind] = psit_calc(h_in[2, ind]/monob[ind], meth)
252
        ct[ind], cq[ind] = ctcq_calc(cd10n[ind], cd[ind], ct10n[ind], cq10n[ind],
253 254
                                      h_in[1, ind], h_in[2, ind], ref_ht,
                                      psit[ind], psiq[ind])
sbiri's avatar
sbiri committed
255 256 257
        usr[ind], tsr[ind], qsr[ind] = get_strs(h_in[:, ind], monob[ind],
                                                wind[ind], zo[ind], zot[ind],
                                                zoq[ind], dt[ind], dq[ind],
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
                                                dter[ind], dqer[ind], dtwl[ind],
                                                ct[ind], cq[ind], cskin, wl,
                                                meth)
        if ((cskin == 1) and (wl == 0)):
            if (skin == "C35"):
                dter[ind], dqer[ind], tkt[ind] = cs_C35(sst[ind], qsea[ind],
                                                        rho[ind], Rs[ind],
                                                        Rnl[ind],
                                                        cp[ind], lv[ind],
                                                        np.copy(tkt[ind]),
                                                        usr[ind], tsr[ind],
                                                        qsr[ind], lat[ind])
            elif (skin == "ecmwf"):
                dter[ind] = cs_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     sst[ind], lat[ind])
                dqer[ind] = (dter[ind]*0.622*lv[ind]*qsea[ind] /
                             (287.1*np.power(sst[ind], 2)))
            elif (skin == "Beljaars"):
                Qs[ind], dter[ind] = cs_Beljaars(rho[ind], Rs[ind], Rnl[ind],
                                                 cp[ind], lv[ind], usr[ind],
                                                 tsr[ind], qsr[ind], lat[ind],
                                                 np.copy(Qs[ind]))
                dqer = dter*0.622*lv*qsea/(287.1*np.power(sst, 2))
        elif ((cskin == 1) and (wl == 1)):
            if (skin == "C35"):
                dter[ind], dqer[ind], tkt[ind] = cs_C35(sst[ind], qsea[ind],
                                                        rho[ind], Rs[ind],
                                                        Rnl[ind],
                                                        cp[ind], lv[ind],
                                                        np.copy(tkt[ind]),
                                                        usr[ind], tsr[ind],
                                                        qsr[ind], lat[ind])
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
            elif (skin == "ecmwf"):
                dter[ind] = cs_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     sst[ind], lat[ind])
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
                dqer[ind] = (dter[ind]*0.622*lv[ind]*qsea[ind] /
                             (287.1*np.power(skt[ind], 2)))
            elif (skin == "Beljaars"):
                Qs[ind], dter[ind] = cs_Beljaars(rho[ind], Rs[ind], Rnl[ind],
                                                 cp[ind], lv[ind], usr[ind],
                                                 tsr[ind], qsr[ind], lat[ind],
                                                 np.copy(Qs[ind]))
                dtwl[ind] = wl_ecmwf(rho[ind], Rs[ind], Rnl[ind], cp[ind],
                                     lv[ind], usr[ind], tsr[ind], qsr[ind],
                                     np.copy(sst[ind]), np.copy(skt[ind]),
                                     np.copy(dter[ind]), lat[ind])
                skt = np.copy(sst)-dter+dtwl
                dqer = dter*0.622*lv*qsea/(287.1*np.power(skt, 2))
318 319 320
        else:
           dter[ind] = np.zeros(sst[ind].shape)
           dqer[ind] = np.zeros(sst[ind].shape)
321
           tkt[ind] = 0.001*np.ones(T[ind].shape)
sbiri's avatar
sbiri committed
322 323 324 325 326 327
        logging.info('method %s | dter = %s | dqer = %s | tkt = %s | Rnl = %s '
                     '| usr = %s | tsr = %s | qsr = %s', meth,
                     np.nanmedian(dter), np.nanmedian(dqer),
                     np.nanmedian(tkt), np.nanmedian(Rnl),
                     np.nanmedian(usr), np.nanmedian(tsr),
                     np.nanmedian(qsr))
328 329
        Rnl[ind] = 0.97*(5.67e-8*np.power(sst[ind] -
                          dter[ind]*cskin, 4)-Rl[ind])
330 331 332 333
        t10n[ind] = (Ta[ind] -
                     tsr[ind]/kappa*(np.log(h_in[1, ind]/ref_ht)-psit[ind]))
        q10n[ind] = (qair[ind] -
                     qsr[ind]/kappa*(np.log(h_in[2, ind]/ref_ht)-psiq[ind]))
334 335 336 337 338 339 340 341
        tv10n[ind] = t10n[ind]*(1+0.6077*q10n[ind])
        tsrv[ind], monob[ind], Rb[ind] = get_L(L, lat[ind], usr[ind], tsr[ind],
                                               qsr[ind], h_in[:, ind], Ta[ind],
                                               sst[ind]-dter[ind]*cskin+dtwl[ind]*wl,
                                               qair[ind], qsea[ind], wind[ind],
                                               np.copy(monob[ind]), psim[ind],
                                               meth)
        # sst[ind]-dter[ind]*cskin+dtwl[ind]*wl
342 343 344
        psim[ind] = psim_calc(h_in[0, ind]/monob[ind], meth)
        psit[ind] = psit_calc(h_in[1, ind]/monob[ind], meth)
        psiq[ind] = psit_calc(h_in[2, ind]/monob[ind], meth)
345
        if (gust[0] == 1 and meth == "UA"):
sbiri's avatar
sbiri committed
346
            wind[ind] = np.where(dtv[ind] >= 0, np.where(spd[ind] > 0.1,
347 348 349 350 351 352 353
                                  spd[ind], 0.1),
                                  np.sqrt(np.power(np.copy(spd[ind]), 2) +
                                  np.power(get_gust(gust[1], tv[ind], usr[ind],
                                  tsrv[ind], gust[2], lat[ind]), 2)))
                                  # Zeng et al. 1998 (20)
        elif (gust[0] == 1 and (meth == "C30" or meth == "C35" or
                                meth == "C40")):
sbiri's avatar
sbiri committed
354
            wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) +
355 356 357
                                np.power(get_gust(gust[1], Ta[ind], usr[ind],
                                tsrv[ind], gust[2], lat[ind]), 2))
        elif (gust[0] == 1):
358
            wind[ind] = np.sqrt(np.power(np.copy(spd[ind]), 2) +
359 360 361
                                np.power(get_gust(gust[1], Ta[ind], usr[ind],
                                tsrv[ind], gust[2], lat[ind]), 2))
        elif (gust[0] == 0):
362
            wind[ind] = np.copy(spd[ind])
363 364
        u10n[ind] = wind[ind]-usr[ind]/kappa*(np.log(h_in[0, ind]/10) -
                                              psim[ind])
365 366 367
        flag = np.where((u10n < 0) & (flag == "n"), "u",
                        np.where((u10n < 0) & (flag != "n"), flag+[","]+["u"],
                                 flag))
sbiri's avatar
sbiri committed
368
        u10n = np.where(u10n < 0, np.nan, u10n)
sbiri's avatar
sbiri committed
369
        itera[ind] = np.ones(1)*it
370 371 372 373 374 375 376 377 378 379 380 381 382
        sensible = -rho*cp*usr*tsr
        latent = -rho*lv*usr*qsr
        if (gust[0] == 1):
            tau = rho*np.power(usr, 2)*(spd/wind)
        elif (gust[0] == 0):
            tau = rho*np.power(usr, 2)
        if (tol[0] == 'flux'):
            new = np.array([np.copy(tau), np.copy(sensible), np.copy(latent)])
        elif (tol[0] == 'ref'):
            new = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n)])
        elif (tol[0] == 'all'):
            new = np.array([np.copy(u10n), np.copy(t10n), np.copy(q10n),
                            np.copy(tau), np.copy(sensible), np.copy(latent)])
383
        d = np.abs(new-old)
384 385
        if (tol[0] == 'flux'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
386
                            (d[2, :] > tol[3]))
387 388
        elif (tol[0] == 'ref'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
389
                            (d[2, :] > tol[3]))
390 391
        elif (tol[0] == 'all'):
            ind = np.where((d[0, :] > tol[1])+(d[1, :] > tol[2]) +
392 393
                            (d[2, :] > tol[3])+(d[3, :] > tol[4]) +
                            (d[4, :] > tol[5])+(d[5, :] > tol[6]))
394 395
        if (ind[0].size == 0):
            ii = False
sbiri's avatar
sbiri committed
396
        else:
397
            ii = True
398
    itera[ind] = -1
399
    # itera = np.where(itera > n, -1, itera)
400
    logging.info('method %s | # of iterations:%s', meth, it)
sbiri's avatar
sbiri committed
401
    logging.info('method %s | # of points that did not converge :%s', meth,
402
                  ind[0].size)
sbiri's avatar
sbiri committed
403
    # calculate output parameters
404
    rho = (0.34838*P)/(tv10n)
sbiri's avatar
sbiri committed
405
    t10n = t10n-(273.16+tlapse*ref_ht)
406 407 408 409
    # solve for zo from cd10n
    zo = ref_ht/np.exp(kappa/np.sqrt(cd10n))
    # adjust neutral cdn at any output height
    cdn = np.power(kappa/np.log(hout/zo), 2)
sbiri's avatar
sbiri committed
410 411
    cd = cd_calc(cdn, h_out[0], h_out[0], psim)
    # solve for zot, zoq from ct10n, cq10n
412 413 414
    zot = ref_ht/(np.exp(kappa**2/(ct10n*np.log(ref_ht/zo))))
    zoq = ref_ht/(np.exp(kappa**2/(cq10n*np.log(ref_ht/zo))))
    # adjust neutral ctn, cqn at any output height
sbiri's avatar
sbiri committed
415 416 417
    ctn =np.power(kappa, 2)/(np.log(h_out[0]/zo)*np.log(h_out[1]/zot))
    cqn =np.power(kappa, 2)/(np.log(h_out[0]/zo)*np.log(h_out[2]/zoq))
    ct, cq = ctcq_calc(cdn, cd, ctn, cqn, h_out[1], h_out[2], h_out[1],
418
                       psit, psiq)
419 420 421 422
    uref = (spd-usr/kappa*(np.log(h_in[0]/h_out[0])-psim +
            psim_calc(h_out[0]/monob, meth)))
    tref = (Ta-tsr/kappa*(np.log(h_in[1]/h_out[1])-psit +
            psit_calc(h_out[0]/monob, meth)))
423
    tref = tref-(CtoK+tlapse*h_out[1])
424 425
    qref = (qair-qsr/kappa*(np.log(h_in[2]/h_out[2]) -
            psit+psit_calc(h_out[2]/monob, meth)))
426 427 428 429 430 431 432 433 434
    flag = np.where((q10n < 0) & (flag == "n"), "q",
                    np.where((q10n < 0) & (flag != "n"), flag+[","]+["q"],
                             flag))
    flag = np.where((np.abs(hin[0]/monob) < 0.01) & (flag == "n"), "l",
                    np.where((np.abs(hin[0]/monob) < 0.01) & (flag != "n"),
                             flag+[","]+["l"], flag))
    flag = np.where((itera == -1) & (flag == "n"), "i",
                    np.where((itera == -1) & (flag != "n"), flag+[","]+["i"],
                             flag))
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
    if (meth == "S80"):
        flag = np.where(((u10n < 6) | (u10n > 22)) & (flag == "n"), "o",
                        np.where(((u10n < 6) | (u10n > 22)) & (flag != "n"),
                                 flag+[","]+["o"], flag))
    elif (meth == "LP82"):
        flag = np.where(((u10n < 3) | (u10n > 25)) & (flag == "n"), "o",
                        np.where(((u10n < 3) | (u10n > 25)) & (flag != "n"),
                                 flag+[","]+["o"], flag))
    elif (meth == "YT96"):
        flag = np.where(((u10n < 3) | (u10n > 26)) & (flag == "n"), "o",
                        np.where(((u10n < 3) | (u10n > 26)) & (flag != "n"),
                                 flag+[","]+["o"], flag))
    elif (meth == "UA"):
        flag = np.where(((u10n < 0.5) | (u10n > 18)) & (flag == "n"), "o",
                        np.where(((u10n < 0.5) | (u10n > 18)) & (flag != "n"),
                                 flag+[","]+["o"], flag))
    elif (meth == "LY04"):
        flag = np.where((u10n < 0.5) & (flag == "n"), "o",
                        np.where((u10n < 0.5) & (flag != "n"),
                                 flag+[","]+["o"], flag))
    if (hum == None):
        rh = np.ones(sst.shape)*80
    elif (hum[0] == 'rh'):
        rh = hum[1]
        rh = np.where(rh > 100, np.nan, rh)
    elif (hum[0] == 'Td'):
        Td = hum[1] # dew point temperature (K)
        Td = np.where(Td < 200, np.copy(Td)+CtoK, np.copy(Td))
        T = np.where(T < 200, np.copy(T)+CtoK, np.copy(T))
        esd = 611.21*np.exp(17.502*((Td-273.16)/(Td-32.19)))
        es = 611.21*np.exp(17.502*((T-273.16)/(T-32.19)))
        rh = 100*esd/es
        rh = np.where(rh > 100, np.nan, rh)

    res = np.zeros((39, len(spd)))
sbiri's avatar
sbiri committed
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    res[0][:] = tau
    res[1][:] = sensible
    res[2][:] = latent
    res[3][:] = monob
    res[4][:] = cd
    res[5][:] = cdn
    res[6][:] = ct
    res[7][:] = ctn
    res[8][:] = cq
    res[9][:] = cqn
    res[10][:] = tsrv
    res[11][:] = tsr
    res[12][:] = qsr
    res[13][:] = usr
    res[14][:] = psim
    res[15][:] = psit
486 487 488 489 490 491 492 493
    res[16][:] = psiq
    res[17][:] = u10n
    res[18][:] = t10n
    res[19][:] = tv10n
    res[20][:] = q10n
    res[21][:] = zo
    res[22][:] = zot
    res[23][:] = zoq
494 495 496
    res[24][:] = uref
    res[25][:] = tref
    res[26][:] = qref
497
    res[27][:] = itera
498 499
    res[28][:] = dter
    res[29][:] = dqer
500 501 502 503 504 505
    res[30][:] = dtwl
    res[31][:] = qair
    res[32][:] = qsea
    res[33][:] = Rl
    res[34][:] = Rs
    res[35][:] = Rnl
506 507 508
    res[36][:] = np.sqrt(np.power(wind, 2)-np.power(spd, 2))
    res[37][:] = Rb
    res[38][:] = rh
509

510 511 512
    if (out == 0):
        res[:, ind] = np.nan
    # set missing values where data have non acceptable values
513 514
    res = np.asarray([np.where((spd < 0) | (q10n < 0), np.nan,
                               res[i][:]) for i in range(39)])
515 516 517
    # output with pandas
    resAll = pd.DataFrame(data=res.T, index=range(len(spd)),
                        columns=["tau", "shf", "lhf", "L", "cd", "cdn", "ct",
518 519 520 521 522 523
                                 "ctn", "cq", "cqn", "tsrv", "tsr", "qsr",
                                 "usr", "psim", "psit","psiq", "u10n", "t10n",
                                 "tv10n", "q10n", "zo", "zot", "zoq", "uref",
                                 "tref", "qref", "iteration", "dter", "dqer",
                                 "dtwl", "qair", "qsea", "Rl", "Rs", "Rnl",
                                 "ug", "Rib", "rh"])
524 525
    resAll["flag"] = flag
    return resAll
526