flux_subs.py 27.3 KB
Newer Older
sbiri's avatar
sbiri committed
1
import numpy as np
2
from util_subs import (CtoK, kappa, gc, visc_air)
sbiri's avatar
sbiri committed
3

sbiri's avatar
sbiri committed
4
# ---------------------------------------------------------------------
sbiri's avatar
sbiri committed
5

sbiri's avatar
sbiri committed
6

sbiri's avatar
sbiri committed
7
def cdn_calc(u10n, Ta, Tp, lat, meth="S80"):
sbiri's avatar
sbiri committed
8
    """ Calculates neutral drag coefficient
sbiri's avatar
sbiri committed
9

sbiri's avatar
sbiri committed
10 11 12 13 14 15 16 17
    Parameters
    ----------
    u10n : float
        neutral 10m wind speed (m/s)
    Ta   : float
        air temperature (K)
    Tp   : float
        wave period
18 19
    lat : float
        latitude
sbiri's avatar
sbiri committed
20 21
    meth : str

sbiri's avatar
sbiri committed
22 23 24 25
    Returns
    -------
    cdn : float
    """
26
    cdn = np.zeros(Ta.shape)*np.nan
sbiri's avatar
sbiri committed
27
    if (meth == "S80"):
sbiri's avatar
sbiri committed
28 29
        cdn = np.where(u10n <= 3, (0.61+0.567/u10n)*0.001,
                       (0.61+0.063*u10n)*0.001)
sbiri's avatar
sbiri committed
30
    elif (meth == "LP82"):
sbiri's avatar
sbiri committed
31 32 33
        cdn = np.where((u10n < 11) & (u10n >= 4), 1.2*0.001,
                       np.where((u10n <= 25) & (u10n >= 11),
                       (0.49+0.065*u10n)*0.001, 1.14*0.001))
sbiri's avatar
sbiri committed
34 35 36 37
    elif (meth == "S88" or meth == "UA" or meth == "ERA5" or meth == "C30" or
          meth == "C35" or meth == "C40"):
        cdn = cdn_from_roughness(u10n, Ta, None, lat, meth)
    elif (meth == "YT96"):
sbiri's avatar
sbiri committed
38
        # for u<3 same as S80
sbiri's avatar
sbiri committed
39 40 41 42
        cdn = np.where((u10n < 6) & (u10n >= 3),
                       (0.29+3.1/u10n+7.7/u10n**2)*0.001,
                       np.where((u10n <= 26) & (u10n >= 6),
                       (0.60 + 0.070*u10n)*0.001, (0.61+0.567/u10n)*0.001))
sbiri's avatar
sbiri committed
43
    elif (meth == "LY04"):
sbiri's avatar
sbiri committed
44
        cdn = np.where(u10n >= 0.5,
45 46
                       (0.142+(2.7/u10n)+(u10n/13.09))*0.001,
                       (0.142+(2.7/0.5)+(0.5/13.09))*0.001)
sbiri's avatar
sbiri committed
47
    else:
sbiri's avatar
sbiri committed
48
        print("unknown method cdn: "+meth)
sbiri's avatar
sbiri committed
49
    return cdn
sbiri's avatar
sbiri committed
50 51 52
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
53
def cdn_from_roughness(u10n, Ta, Tp, lat, meth="S88"):
sbiri's avatar
sbiri committed
54
    """ Calculates neutral drag coefficient from roughness length
sbiri's avatar
sbiri committed
55

sbiri's avatar
sbiri committed
56 57 58 59 60 61 62 63
    Parameters
    ----------
    u10n : float
        neutral 10m wind speed (m/s)
    Ta   : float
        air temperature (K)
    Tp   : float
        wave period
64 65
    lat : float
        latitude
sbiri's avatar
sbiri committed
66 67
    meth : str

sbiri's avatar
sbiri committed
68 69 70 71
    Returns
    -------
    cdn : float
    """
sbiri's avatar
sbiri committed
72
    g, tol = gc(lat, None), 0.000001
sbiri's avatar
sbiri committed
73 74 75
    cdn, usr = np.zeros(Ta.shape), np.zeros(Ta.shape)
    cdnn = (0.61+0.063*u10n)*0.001
    zo, zc, zs = np.zeros(Ta.shape), np.zeros(Ta.shape), np.zeros(Ta.shape)
sbiri's avatar
sbiri committed
76 77
    for it in range(5):
        cdn = np.copy(cdnn)
sbiri's avatar
sbiri committed
78
        usr = np.sqrt(cdn*u10n**2)
sbiri's avatar
sbiri committed
79
        if (meth == "S88"):
80
            # Charnock roughness length (eq. 4 in Smith 88)
sbiri's avatar
sbiri committed
81
            zc = 0.011*np.power(usr, 2)/g
82
            #  smooth surface roughness length (eq. 6 in Smith 88)
sbiri's avatar
sbiri committed
83
            zs = 0.11*visc_air(Ta)/usr
84
            zo = zc + zs  #  eq. 7 & 8 in Smith 88
sbiri's avatar
sbiri committed
85
        elif (meth == "UA"):
sbiri's avatar
sbiri committed
86 87
            # valid for 0<u<18m/s # Zeng et al. 1998 (24)
            zo = 0.013*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr
sbiri's avatar
sbiri committed
88 89
        elif (meth == "C30"):
            a = 0.011*np.ones(Ta.shape)
90
            a = np.where(u10n > 10, 0.011+(u10n-10)*(0.018-0.011)/(18-10),
sbiri's avatar
sbiri committed
91 92 93 94
                         np.where(u10n > 18, 0.018, a))
            zo = a*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr
        elif (meth == "C35"):
            a = 0.011*np.ones(Ta.shape)
95 96 97
            # a = np.where(u10n > 19, 0.0017*19-0.0050,
            #             np.where((u10n > 7) & (u10n <= 18),
            #                       0.0017*u10n-0.0050, a))
98
            a = np.where(u10n > 19, 0.0017*19-0.0050, 0.0017*u10n-0.0050)
sbiri's avatar
sbiri committed
99 100 101 102 103 104
            zo = 0.11*visc_air(Ta)/usr+a*np.power(usr, 2)/g
        elif (meth == "C40"):
            a = 0.011*np.ones(Ta.shape)
            a = np.where(u10n > 22, 0.0016*22-0.0035, 0.0016*u10n-0.0035)
            zo = a*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr # surface roughness
        elif (meth == "ERA5"):
105
            # eq. (3.26) p.38 over sea IFS Documentation cy46r1
106
            zo = 0.018*np.power(usr, 2)/g+0.11*visc_air(Ta)/usr
sbiri's avatar
sbiri committed
107
        else:
sbiri's avatar
sbiri committed
108
            print("unknown method for cdn_from_roughness "+meth)
sbiri's avatar
sbiri committed
109
        cdnn = (kappa/np.log(10/zo))**2
sbiri's avatar
sbiri committed
110
    cdn = np.where(np.abs(cdnn-cdn) < tol, cdnn, np.nan)
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    return cdn
# ---------------------------------------------------------------------


def cd_calc(cdn, height, ref_ht, psim):
    """ Calculates drag coefficient at reference height

    Parameters
    ----------
    cdn : float
        neutral drag coefficient
    height : float
        original sensor height (m)
    ref_ht : float
        reference height (m)
    psim : float
        momentum stability function

    Returns
    -------
    cd : float
    """
    cd = (cdn/np.power(1+(np.sqrt(cdn)*(np.log(height/ref_ht)-psim))/kappa, 2))
    return cd
sbiri's avatar
sbiri committed
135
# ---------------------------------------------------------------------
sbiri's avatar
sbiri committed
136

sbiri's avatar
sbiri committed
137

sbiri's avatar
sbiri committed
138
def ctcqn_calc(zol, cdn, u10n, zo, Ta, meth="S80"):
sbiri's avatar
sbiri committed
139
    """ Calculates neutral heat and moisture exchange coefficients
sbiri's avatar
sbiri committed
140

sbiri's avatar
sbiri committed
141 142 143 144 145
    Parameters
    ----------
    zol  : float
        height over MO length
    cdn  : float
146
        neutral drag coefficient
sbiri's avatar
sbiri committed
147 148 149 150 151 152
    u10n : float
        neutral 10m wind speed (m/s)
    zo   : float
        surface roughness (m)
    Ta   : float
        air temperature (K)
sbiri's avatar
sbiri committed
153 154
    meth : str

sbiri's avatar
sbiri committed
155 156 157 158 159 160 161
    Returns
    -------
    ctn : float
        neutral heat exchange coefficient
    cqn : float
        neutral moisture exchange coefficient
    """
sbiri's avatar
sbiri committed
162
    if (meth == "S80" or meth == "S88" or meth == "YT96"):
sbiri's avatar
sbiri committed
163
        cqn = np.ones(Ta.shape)*1.20*0.001  # from S88
sbiri's avatar
sbiri committed
164
        ctn = np.ones(Ta.shape)*1.00*0.001
sbiri's avatar
sbiri committed
165
    elif (meth == "LP82"):
sbiri's avatar
sbiri committed
166
        cqn = np.where((zol <= 0) & (u10n > 4) & (u10n < 14), 1.15*0.001,
167
                       1*0.001)
sbiri's avatar
sbiri committed
168 169
        ctn = np.where((zol <= 0) & (u10n > 4) & (u10n < 25), 1.13*0.001,
                       0.66*0.001)
sbiri's avatar
sbiri committed
170 171 172 173 174
    elif (meth == "LY04"):
        cqn = 34.6*0.001*np.sqrt(cdn)
        ctn = np.where(zol <= 0, 32.7*0.001*np.sqrt(cdn), 18*0.001*np.sqrt(cdn))
    elif (meth == "UA"):
        usr = np.sqrt(cdn*np.power(u10n, 2))
sbiri's avatar
sbiri committed
175
        # Zeng et al. 1998 (25)
sbiri's avatar
sbiri committed
176 177
        re=usr*zo/visc_air(Ta)
        zoq = zo/np.exp(2.67*np.power(re, 1/4)-2.57)
sbiri's avatar
sbiri committed
178 179 180 181 182
        zot = zoq
        cqn = np.where((u10n > 0.5) & (u10n < 18), np.power(kappa, 2) /
                       (np.log(10/zo)*np.log(10/zoq)), np.nan)
        ctn = np.where((u10n > 0.5) & (u10n < 18), np.power(kappa, 2) /
                       (np.log(10/zo)*np.log(10/zoq)), np.nan)
sbiri's avatar
sbiri committed
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    elif (meth == "C30"):
        usr = np.sqrt(cdn*np.power(u10n, 2))
        rr = zo*usr/visc_air(Ta)
        zoq = np.where(5e-5/np.power(rr, 0.6) > 1.15e-4, 1.15e-4,
                       5e-5/np.power(rr, 0.6))  # moisture roughness
        zot=zoq  # temperature roughness
        cqn = kappa**2/np.log(10/zo)/np.log(10/zoq)
        ctn = kappa**2/np.log(10/zo)/np.log(10/zot)
    elif (meth == "C35"):
        usr = np.sqrt(cdn*np.power(u10n, 2))
        rr = zo*usr/visc_air(Ta)
        zoq = np.where(5.8e-5/np.power(rr, 0.72) > 1.6e-4, 1.6e-4,
                       5.8e-5/np.power(rr, 0.72))  # moisture roughness
        zot=zoq  # temperature roughness
        cqn = kappa**2/np.log(10/zo)/np.log(10/zoq)
        ctn = kappa**2/np.log(10/zo)/np.log(10/zot)
    elif (meth == "C40"):
        usr = np.sqrt(cdn*np.power(u10n, 2))
        rr = zo*usr/visc_air(Ta)
        zot = np.where(1.0e-4/np.power(rr, 0.55) > 2.4e-4/np.power(rr, 1.2),
                       2.4e-4/np.power(rr, 1.2),
                       1.0e-4/np.power(rr, 0.55)) # temperature roughness
        zoq = np.where(2.0e-5/np.power(rr,0.22) > 1.1e-4/np.power(rr,0.9),
                       1.1e-4/np.power(rr,0.9), 2.0e-5/np.power(rr,0.22))
        # moisture roughness determined by the CLIMODE, GASEX and CBLAST data
#        zoq = np.where(5e-5/np.power(rr, 0.6) > 1.15e-4, 1.15e-4,
#                       5e-5/np.power(rr, 0.6))  # moisture roughness as in C30
        cqn = kappa**2/np.log(10/zo)/np.log(10/zoq)
        ctn = kappa**2/np.log(10/zo)/np.log(10/zot)
    elif (meth == "ERA5"):
213
        # eq. (3.26) p.38 over sea IFS Documentation cy46r1
sbiri's avatar
sbiri committed
214 215 216 217 218
        usr = np.sqrt(cdn*np.power(u10n, 2))
        zot = 0.40*visc_air(Ta)/usr
        zoq = 0.62*visc_air(Ta)/usr
        cqn = kappa**2/np.log(10/zo)/np.log(10/zoq)
        ctn = kappa**2/np.log(10/zo)/np.log(10/zot)
sbiri's avatar
sbiri committed
219
    else:
sbiri's avatar
sbiri committed
220
        print("unknown method ctcqn: "+meth)
sbiri's avatar
sbiri committed
221
    return ctn, cqn
sbiri's avatar
sbiri committed
222 223 224
# ---------------------------------------------------------------------


225
def ctcq_calc(cdn, cd, ctn, cqn, ht, hq, ref_ht, psit, psiq):
sbiri's avatar
sbiri committed
226
    """ Calculates heat and moisture exchange coefficients at reference height
sbiri's avatar
sbiri committed
227

sbiri's avatar
sbiri committed
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    Parameters
    ----------
    cdn : float
        neutral drag coefficient
    cd  : float
        drag coefficient at reference height
    ctn : float
        neutral heat exchange coefficient
    cqn : float
        neutral moisture exchange coefficient
    h_t : float
        original temperature sensor height (m)
    h_q : float
        original moisture sensor height (m)
    ref_ht : float
        reference height (m)
    psit : float
        heat stability function
    psiq : float
        moisture stability function
sbiri's avatar
sbiri committed
248

sbiri's avatar
sbiri committed
249 250 251
    Returns
    -------
    ct : float
252
       heat exchange coefficient
sbiri's avatar
sbiri committed
253
    cq : float
254
       moisture exchange coefficient
sbiri's avatar
sbiri committed
255
    """
256
    ct = (ctn*np.sqrt(cd/cdn) /
257
          (1+ctn*((np.log(ht/ref_ht)-psit)/(kappa*np.sqrt(cdn)))))
258
    cq = (cqn*np.sqrt(cd/cdn) /
259
          (1+cqn*((np.log(hq/ref_ht)-psiq)/(kappa*np.sqrt(cdn)))))
sbiri's avatar
sbiri committed
260
    return ct, cq
sbiri's avatar
sbiri committed
261 262 263
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
def get_stabco(meth="S80"):
    """ Gives the coefficients \\alpha, \\beta, \\gamma for stability functions

    Parameters
    ----------
    meth : str

    Returns
    -------
    coeffs : float
    """
    alpha, beta, gamma = 0, 0, 0
    if (meth == "S80" or meth == "S88" or meth == "LY04" or
        meth == "UA" or meth == "ERA5" or meth == "C30" or meth == "C35" or
        meth == "C40"):
        alpha, beta, gamma = 16, 0.25, 5  # Smith 1980, from Dyer (1974)
    elif (meth == "LP82"):
        alpha, beta, gamma = 16, 0.25, 7
    elif (meth == "YT96"):
        alpha, beta, gamma = 20, 0.25, 5
    else:
        print("unknown method stabco: "+meth)
    coeffs = np.zeros(3)
    coeffs[0] = alpha
    coeffs[1] = beta
    coeffs[2] = gamma
    return coeffs
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
294
def psim_calc(zol, meth="S80"):
sbiri's avatar
sbiri committed
295
    """ Calculates momentum stability function
sbiri's avatar
sbiri committed
296

sbiri's avatar
sbiri committed
297 298 299 300
    Parameters
    ----------
    zol : float
        height over MO length
sbiri's avatar
sbiri committed
301 302
    meth : str

sbiri's avatar
sbiri committed
303 304 305 306
    Returns
    -------
    psim : float
    """
sbiri's avatar
sbiri committed
307
    if (meth == "ERA5"):
308
        psim = psim_era5(zol)
sbiri's avatar
sbiri committed
309 310
    elif (meth == "C30" or meth == "C35" or meth == "C40"):
        psim = psiu_26(zol, meth)
sbiri's avatar
sbiri committed
311
    else:
312 313
        psim = np.where(zol < 0, psim_conv(zol, meth),
                        psim_stab(zol, meth))
sbiri's avatar
sbiri committed
314
    return psim
sbiri's avatar
sbiri committed
315 316 317
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
318
def psit_calc(zol, meth="S80"):
sbiri's avatar
sbiri committed
319
    """ Calculates heat stability function
sbiri's avatar
sbiri committed
320

sbiri's avatar
sbiri committed
321 322 323 324
    Parameters
    ----------
    zol : float
        height over MO length
sbiri's avatar
sbiri committed
325
    meth : str
326
        parameterisation method
sbiri's avatar
sbiri committed
327

sbiri's avatar
sbiri committed
328 329 330 331
    Returns
    -------
    psit : float
    """
sbiri's avatar
sbiri committed
332
    if (meth == "ERA5"):
333 334
        psit = np.where(zol < 0, psi_conv(zol, meth),
                        psi_era5(zol))
sbiri's avatar
sbiri committed
335 336
    elif (meth == "C30" or meth == "C35" or meth == "C40"):
        psit = psit_26(zol)
sbiri's avatar
sbiri committed
337
    else:
338 339
        psit = np.where(zol < 0, psi_conv(zol, meth),
                        psi_stab(zol, meth))
sbiri's avatar
sbiri committed
340
    return psit
sbiri's avatar
sbiri committed
341 342 343
# ---------------------------------------------------------------------


344
def psi_era5(zol):
sbiri's avatar
sbiri committed
345
    """ Calculates heat stability function for stable conditions
sbiri's avatar
sbiri committed
346
        for method ERA5
sbiri's avatar
sbiri committed
347

sbiri's avatar
sbiri committed
348 349 350 351
    Parameters
    ----------
    zol : float
        height over MO length
sbiri's avatar
sbiri committed
352

sbiri's avatar
sbiri committed
353 354 355 356
    Returns
    -------
    psit : float
    """
357
    # eq (3.22) p. 37 IFS Documentation cy46r1
sbiri's avatar
sbiri committed
358 359
    a, b, c, d = 1, 2/3, 5, 0.35
    psit = -b*(zol-c/d)*np.exp(-d*zol)-np.power(1+(2/3)*a*zol, 1.5)-(b*c)/d+1
sbiri's avatar
sbiri committed
360
    return psit
sbiri's avatar
sbiri committed
361 362
# ---------------------------------------------------------------------

sbiri's avatar
sbiri committed
363 364 365 366 367 368 369 370 371 372 373 374 375 376

def psit_26(zol):
    """ Computes temperature structure function as in C35

    Parameters
    ----------
    zol : float
        height over MO length

    Returns
    -------
    psi : float
    """
    b, d = 2/3, 0.35
377 378 379 380 381 382 383 384
    dzol = np.where(d*zol > 50, 50, d*zol)
    psi = np.where(zol > 0,-(np.power(1+b*zol, 1.5)+b*(zol-14.28) *
                             np.exp(-dzol)+8.525), np.nan)
    psik = np.where(zol < 0, 2*np.log((1+np.sqrt(1-15*zol))/2), np.nan)
    psic = np.where(zol < 0, 1.5*np.log((1+np.power(1-34.15*zol, 1/3) +
                    np.power(1-34.15*zol, 2/3))/3)-np.sqrt(3) *
                    np.arctan(1+2*np.power(1-34.15*zol, 1/3))/np.sqrt(3) +
                    4*np.arctan(1)/np.sqrt(3), np.nan)
385 386
    f = np.power(zol, 2)/(1+np.power(zol, 2))
    psi = np.where(zol < 0, (1-f)*psik+f*psic, psi)
sbiri's avatar
sbiri committed
387 388 389 390
    return psi
# ---------------------------------------------------------------------


391
def psi_conv(zol, meth):
sbiri's avatar
sbiri committed
392
    """ Calculates heat stability function for unstable conditions
sbiri's avatar
sbiri committed
393

sbiri's avatar
sbiri committed
394 395 396 397
    Parameters
    ----------
    zol : float
        height over MO length
398 399
    meth : str
        parameterisation method
sbiri's avatar
sbiri committed
400

sbiri's avatar
sbiri committed
401 402 403 404
    Returns
    -------
    psit : float
    """
405 406
    coeffs = get_stabco(meth)
    alpha, beta = coeffs[0], coeffs[1]
407 408
    xtmp = np.power(1-alpha*zol, beta)
    psit = 2*np.log((1+np.power(xtmp, 2))*0.5)
sbiri's avatar
sbiri committed
409
    return psit
sbiri's avatar
sbiri committed
410 411 412
# ---------------------------------------------------------------------


413
def psi_stab(zol, meth):
sbiri's avatar
sbiri committed
414
    """ Calculates heat stability function for stable conditions
sbiri's avatar
sbiri committed
415

sbiri's avatar
sbiri committed
416 417 418 419
    Parameters
    ----------
    zol : float
        height over MO length
420 421
    meth : str
        parameterisation method
sbiri's avatar
sbiri committed
422

sbiri's avatar
sbiri committed
423 424 425 426
    Returns
    -------
    psit : float
    """
427 428
    coeffs = get_stabco(meth)
    gamma = coeffs[2]
sbiri's avatar
sbiri committed
429
    psit = -gamma*zol
sbiri's avatar
sbiri committed
430
    return psit
sbiri's avatar
sbiri committed
431 432 433
# ---------------------------------------------------------------------


434 435
def psim_era5(zol):
    """ Calculates momentum stability function for method ERA5
sbiri's avatar
sbiri committed
436

sbiri's avatar
sbiri committed
437 438 439 440
    Parameters
    ----------
    zol : float
        height over MO length
sbiri's avatar
sbiri committed
441

sbiri's avatar
sbiri committed
442 443 444 445
    Returns
    -------
    psim : float
    """
446 447 448 449
    # eq (3.20, 3.22) p. 37 IFS Documentation cy46r1
    coeffs = get_stabco("ERA5")
    alpha, beta = coeffs[0], coeffs[1]
    xtmp = np.power(1-alpha*zol, beta)
sbiri's avatar
sbiri committed
450
    a, b, c, d = 1, 2/3, 5, 0.35
451 452 453
    psim = np.where(zol < 0, np.pi/2-2*np.arctan(xtmp) +
                    np.log((np.power(1+xtmp, 2)*(1+np.power(xtmp, 2)))/8),
                    -b*(zol-c/d)*np.exp(-d*zol)-a*zol-(b*c)/d)
sbiri's avatar
sbiri committed
454 455 456 457
    return psim
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
def psiu_26(zol, meth):
    """ Computes velocity structure function C35

    Parameters
    ----------
    zol : float
        height over MO length

    Returns
    -------
    psi : float
    """
    if (meth == "C30"):
        dzol = np.where(0.35*zol > 50, 50, 0.35*zol) # stable
        psi = np.where(zol > 0, -((1+zol)+0.6667*(zol-14.28)*np.exp(-dzol) +
                                  8.525), np.nan)
        x = np.where(zol < 0, np.power(1-15*zol, 0.25), np.nan)
        psik = np.where(zol < 0, 2*np.log((1+x)/2)+np.log((1+np.power(x, 2)) /
                        2)-2*np.arctan(x)+2*np.arctan(1), np.nan)
        x = np.where(zol < 0, np.power(1-10.15*zol, 0.3333), np.nan)
        psic = np.where(zol < 0, 1.5*np.log((1+x+np.power(x, 2))/3) -
                        np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3)) +
                        4*np.arctan(1)/np.sqrt(3), np.nan)
        f = np.power(zol, 2)/(1+np.power(zol, 2))
        psi = np.where(zol < 0, (1-f)*psik+f*psic, psi)
    elif (meth == "C35" or meth == "C40"):
        dzol = np.where(0.35*zol > 50, 50, 0.35*zol)  # stable
        a, b, c, d = 0.7, 3/4, 5, 0.35
        psi = np.where(zol > 0, -(a*zol+b*(zol-c/d)*np.exp(-dzol)+b*c/d),
                       np.nan)
        x = np.where(zol < 0, np.power(1-15*zol, 0.25), np.nan)
        psik = np.where(zol < 0, 2*np.log((1+x)/2)+np.log((1+x**2)/2) -
                        2*np.arctan(x)+2*np.arctan(1), np.nan)
        x = np.where(zol < 0, np.power(1-10.15*zol, 0.3333), np.nan)
        psic = np.where(zol < 0, 1.5*np.log((1+x+np.power(x, 2))/3) -
                        np.sqrt(3)*np.arctan((1+2*x)/np.sqrt(3)) +
                        4*np.arctan(1)/np.sqrt(3), np.nan)
        f = np.power(zol, 2)/(1+np.power(zol, 2))
        psi = np.where(zol < 0, (1-f)*psik+f*psic, psi)
    return psi
498 499
#------------------------------------------------------------------------------

sbiri's avatar
sbiri committed
500 501


502
def psim_conv(zol, meth):
sbiri's avatar
sbiri committed
503
    """ Calculates momentum stability function for unstable conditions
sbiri's avatar
sbiri committed
504

sbiri's avatar
sbiri committed
505 506 507 508
    Parameters
    ----------
    zol : float
        height over MO length
509 510
    meth : str
        parameterisation method
sbiri's avatar
sbiri committed
511

sbiri's avatar
sbiri committed
512 513 514 515
    Returns
    -------
    psim : float
    """
516 517
    coeffs = get_stabco(meth)
    alpha, beta = coeffs[0], coeffs[1]
518 519
    xtmp = np.power(1-alpha*zol, beta)
    psim = (2*np.log((1+xtmp)*0.5)+np.log((1+np.power(xtmp, 2))*0.5) -
sbiri's avatar
sbiri committed
520
            2*np.arctan(xtmp)+np.pi/2)
sbiri's avatar
sbiri committed
521
    return psim
sbiri's avatar
sbiri committed
522 523 524
# ---------------------------------------------------------------------


525
def psim_stab(zol, meth):
sbiri's avatar
sbiri committed
526
    """ Calculates momentum stability function for stable conditions
sbiri's avatar
sbiri committed
527

sbiri's avatar
sbiri committed
528 529 530 531
    Parameters
    ----------
    zol : float
        height over MO length
532 533
    meth : str
        parameterisation method
sbiri's avatar
sbiri committed
534

sbiri's avatar
sbiri committed
535 536 537 538
    Returns
    -------
    psim : float
    """
539 540
    coeffs = get_stabco(meth)
    gamma = coeffs[2]
sbiri's avatar
sbiri committed
541 542 543 544 545
    psim = -gamma*zol
    return psim
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
546
def get_skin(sst, qsea, rho, Rl, Rs, Rnl, cp, lv, tkt, usr, tsr, qsr, lat):
sbiri's avatar
sbiri committed
547
    """ Computes cool skin
sbiri's avatar
sbiri committed
548

sbiri's avatar
sbiri committed
549 550 551 552 553 554 555 556 557 558 559 560
    Parameters
    ----------
    sst : float
        sea surface temperature ($^\circ$\,C)
    qsea : float
        specific humidity over sea (g/kg)
    rho : float
        density of air (kg/m^3)
    Rl : float
        downward longwave radiation (W/m^2)
    Rs : float
        downward shortwave radiation (W/m^2)
sbiri's avatar
sbiri committed
561 562
    Rnl : float
        upwelling IR radiation (W/m^2)
sbiri's avatar
sbiri committed
563 564 565 566
    cp : float
       specific heat of air at constant pressure
    lv : float
       latent heat of vaporization
sbiri's avatar
sbiri committed
567 568
    tkt : float
       cool skin thickness
sbiri's avatar
sbiri committed
569 570 571 572 573 574 575 576
    usr : float
       friction velocity
    tsr : float
       star temperature
    qsr : float
       star humidity
    lat : float
       latitude
sbiri's avatar
sbiri committed
577

sbiri's avatar
sbiri committed
578 579 580
    Returns
    -------
    dter : float
sbiri's avatar
sbiri committed
581 582
    dqer : float

sbiri's avatar
sbiri committed
583
    """
sbiri's avatar
sbiri committed
584 585
    # coded following Saunders (1967) with lambda = 6
    g = gc(lat, None)
sbiri's avatar
sbiri committed
586 587
    if (np.nanmin(sst) > 200):  # if sst in Kelvin convert to Celsius
        sst = sst-CtoK
sbiri's avatar
sbiri committed
588 589 590 591
    # ************  cool skin constants  *******
    # density of water, specific heat capacity of water, water viscosity,
    # thermal conductivity of water
    rhow, cpw, visw, tcw = 1022, 4000, 1e-6, 0.6
sbiri's avatar
sbiri committed
592
    Al = 2.1e-5*np.power(sst+3.2, 0.79)
sbiri's avatar
sbiri committed
593
    be = 0.026
sbiri's avatar
sbiri committed
594 595
    bigc = 16*g*cpw*np.power(rhow*visw, 3)/(np.power(tcw, 2)*np.power(rho, 2))
    wetc = 0.622*lv*qsea/(287.1*np.power(sst+273.16, 2))
sbiri's avatar
sbiri committed
596 597 598 599 600 601 602
    Rns = 0.945*Rs  # albedo correction
    hsb = -rho*cp*usr*tsr
    hlb = -rho*lv*usr*qsr
    qout = Rnl+hsb+hlb
    dels = Rns*(0.065+11*tkt-6.6e-5/tkt*(1-np.exp(-tkt/8.0e-4)))
    qcol = qout-dels
    alq = Al*qcol+be*hlb*cpw/lv
sbiri's avatar
sbiri committed
603
    xlamx = 6*np.ones(sst.shape)
sbiri's avatar
sbiri committed
604
    xlamx = np.where(alq > 0, 6/(1+(bigc*alq/usr**4)**0.75)**0.333, 6)
sbiri's avatar
sbiri committed
605 606 607
    tkt = np.where(alq > 0, xlamx*visw/(np.sqrt(rho/rhow)*usr),
                   np.where(xlamx*visw/(np.sqrt(rho/rhow)*usr) > 0.01, 0.01,
                   xlamx*visw/(np.sqrt(rho/rhow)*usr)))
sbiri's avatar
sbiri committed
608 609
    dter = qcol*tkt/tcw
    dqer = wetc*dter
sbiri's avatar
sbiri committed
610
    return dter, dqer, tkt
sbiri's avatar
sbiri committed
611 612 613 614
# ---------------------------------------------------------------------


def get_gust(beta, Ta, usr, tsrv, zi, lat):
sbiri's avatar
sbiri committed
615
    """ Computes gustiness
sbiri's avatar
sbiri committed
616

sbiri's avatar
sbiri committed
617 618 619 620 621 622 623 624 625 626 627 628 629 630
    Parameters
    ----------
    beta : float
        constant
    Ta : float
        air temperature (K)
    usr : float
        friction velocity (m/s)
    tsrv : float
        star virtual temperature of air (K)
    zi : int
        scale height of the boundary layer depth (m)
    lat : float
        latitude
sbiri's avatar
sbiri committed
631

sbiri's avatar
sbiri committed
632 633 634 635
    Returns
    -------
    ug : float
    """
636
    if (np.nanmax(Ta) < 200):  # convert to K if in Celsius
sbiri's avatar
sbiri committed
637 638
        Ta = Ta+273.16
    g = gc(lat, None)
sbiri's avatar
sbiri committed
639
    Bf = (-g/Ta)*usr*tsrv
sbiri's avatar
sbiri committed
640 641 642 643 644 645
    ug = np.ones(np.shape(Ta))*0.2
    ug = np.where(Bf > 0, beta*np.power(Bf*zi, 1/3), 0.2)
    return ug
# ---------------------------------------------------------------------


sbiri's avatar
sbiri committed
646
def get_L(L, lat, usr, tsr, qsr, t10n, tv10n, qair, h_in, T, Ta, th, tv, sst,
647
          dt, dtv, dq, zo, wind, monob, meth):
sbiri's avatar
sbiri committed
648 649 650 651 652 653 654
    """
    calculates Monin-Obukhov length and virtual star temperature

    Parameters
    ----------
    L : int
        Monin-Obukhov length definition options
655 656
           "S80"  : default for S80, S88, LP82, YT96 and LY04
           "ERA5" : following ERA5 (IFS Documentation cy46r1), default for ERA5
sbiri's avatar
sbiri committed
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
    lat : float
        latitude
    usr : float
        friction wind speed (m/s)
    tsr : float
        star temperature (K)
    qsr : float
        star specific humidity (g/kg)
    t10n : float
        neutral temperature at 10m (K)
    tv10n : float
        neutral virtual temperature at 10m (K)
    qair : float
        air specific humidity (g/kg)
    h_in : float
        sensor heights (m)
    T : float
        air temperature (K)
    Ta : float
        air temperature (K)
    th : float
        potential temperature (K)
    tv : float
        virtual temperature (K)
    sst : float
        sea surface temperature (K)
    dt : float
        temperature difference (K)
    dq : float
        specific humidity difference (g/kg)
    wind : float
        wind speed (m/s)
    monob : float
        Monin-Obukhov length from previous iteration step (m)
    meth : str
692 693
        bulk parameterisation method option: "S80", "S88", "LP82", "YT96",
        "UA", "LY04", "C30", "C35", "C40", "ERA5"
sbiri's avatar
sbiri committed
694 695 696

    Returns
    -------
697 698 699 700
    tsrv : float
        virtual star temperature (K)
    monob : float
        M-O length (m)
sbiri's avatar
sbiri committed
701 702

    """
sbiri's avatar
sbiri committed
703
    g = gc(lat)
704
    if (L == "S80"):
sbiri's avatar
sbiri committed
705 706 707
        tsrv = tsr+0.61*t10n*qsr
        monob = ((tv10n*np.power(usr, 2))/(g*kappa*tsrv))
        monob = np.where(np.fabs(monob) < 1, np.where(monob < 0, -1, 1), monob)
708
    elif (L == "ERA5"):
sbiri's avatar
sbiri committed
709 710 711 712 713 714 715 716 717 718 719 720 721
        tsrv = tsr+0.61*t10n*qsr
        Rb = ((g*h_in[0]*((2*dt)/(Ta+sst-g*h_in[0])+0.61*dq)) /
              np.power(wind, 2))
        zo = (0.11*visc_air(Ta)/usr+0.018*np.power(usr, 2)/g)
        zot = 0.40*visc_air(Ta)/usr
        zol = (Rb*(np.power(np.log((h_in[0]+zo)/zo)-psim_calc((h_in[0]+zo) /
                                                              monob, meth) +
                            psim_calc(zo/monob, meth), 2) /
                   (np.log((h_in[0]+zo)/zot) -
                    psit_calc((h_in[0]+zo)/monob, meth) +
                    psit_calc(zot/monob, meth))))
        monob = h_in[0]/zol
    return tsrv, monob
sbiri's avatar
sbiri committed
722 723 724
#------------------------------------------------------------------------------


725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
def get_strs(h_in, monob, wind, zo, zot, zoq, dt, dq, dter, dqer, ct, cq,
             cskin, meth):
    """
    calculates star wind speed, temperature and specific humidity

    Parameters
    ----------
    h_in : float
        sensor heights (m)
    monob : float
        M-O length (m)
    wind : float
        wind speed (m/s)
    zo : float
        momentum roughness length (m)
    zot : float
        temperature roughness length (m)
    zoq : float
        moisture roughness length (m)
    dt : float
        temperature difference (K)
    dq : float
        specific humidity difference (g/kg)
    dter : float
        cskin temperature adjustment (K)
    dqer : float
751
        cskin q adjustment (g/kg)
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
    ct : float
        temperature exchange coefficient
    cq : float
        moisture exchange coefficient
    cskin : int
        cool skin adjustment switch
    meth : str
        bulk parameterisation method option: "S80", "S88", "LP82", "YT96", "UA",
        "LY04", "C30", "C35", "C40", "ERA5"

    Returns
    -------
    usr : float
        friction wind speed (m/s)
    tsr : float
        star temperature (K)
    qsr : float
        star specific humidity (g/kg)

    """
    if (meth == "UA"):
773
        usr = np.where(h_in[0]/monob <= -1.574, kappa*wind /
774 775 776 777
                       (np.log(-1.574*monob/zo)-psim_calc(-1.574, meth) +
                        psim_calc(zo/monob, meth) +
                        1.14*(np.power(-h_in[0]/monob, 1/3) -
                        np.power(1.574, 1/3))),
778 779 780 781 782 783 784 785 786 787 788
                       np.where(h_in[0]/monob < 0, kappa*wind /
                                (np.log(h_in[0]/zo) -
                                 psim_calc(h_in[0]/monob, meth) +
                                 psim_calc(zo/monob, meth)),
                                np.where(h_in[0]/monob <= 1, kappa*wind /
                                         (np.log(h_in[0]/zo) +
                                          5*h_in[0]/monob-5*zo/monob),
                                         kappa*wind/(np.log(monob/zo)+5 -
                                                     5*zo/monob +
                                                     5*np.log(h_in[0]/monob) +
                                                     h_in[0]/monob-1))))
789 790 791 792 793
                                # Zeng et al. 1998 (7-10)
        tsr = np.where(h_in[1]/monob < -0.465, kappa*(dt+dter*cskin) /
                       (np.log((-0.465*monob)/zot) -
                        psit_calc(-0.465, meth)+0.8*(np.power(0.465, -1/3) -
                        np.power(-h_in[1]/monob, -1/3))),
794 795 796 797 798 799 800 801 802 803 804 805
                       np.where(h_in[1]/monob < 0, kappa*(dt+dter*cskin) /
                                (np.log(h_in[1]/zot) -
                                 psit_calc(h_in[1]/monob, meth) +
                                 psit_calc(zot/monob, meth)),
                                np.where(h_in[1]/monob <= 1,
                                         kappa*(dt+dter*cskin) /
                                         (np.log(h_in[1]/zot) +
                                          5*h_in[1]/monob-5*zot/monob),
                                         kappa*(dt+dter*cskin) /
                                         (np.log(monob/zot)+5 -
                                          5*zot/monob+5*np.log(h_in[1]/monob) +
                                          h_in[1]/monob-1))))
806 807 808 809 810 811
                                # Zeng et al. 1998 (11-14)
        qsr = np.where(h_in[2]/monob < -0.465, kappa*(dq+dqer*cskin) /
                       (np.log((-0.465*monob)/zoq) -
                        psit_calc(-0.465, meth)+psit_calc(zoq/monob, meth) +
                        0.8*(np.power(0.465, -1/3) -
                             np.power(-h_in[2]/monob, -1/3))),
812
                       np.where(h_in[2]/monob < 0,
813 814 815
                                kappa*(dq+dqer*cskin)/(np.log(h_in[1]/zot) -
                                psit_calc(h_in[2]/monob, meth) +
                                psit_calc(zoq/monob, meth)),
816
                                np.where(h_in[2]/monob <= 1,
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
                                         kappa*(dq+dqer*cskin) /
                                         (np.log(h_in[1]/zoq)+5*h_in[2]/monob -
                                          5*zoq/monob),
                                         kappa*(dq+dqer*cskin)/
                                         (np.log(monob/zoq)+5-5*zoq/monob +
                                          5*np.log(h_in[2]/monob) +
                                          h_in[2]/monob-1))))
    elif (meth == "C30" or meth == "C35" or meth == "C40"):
        usr = (wind*kappa/(np.log(h_in[0]/zo)-psiu_26(h_in[0]/monob, meth)))
        tsr = ((dt+dter*cskin)*(kappa/(np.log(h_in[1]/zot) -
                                       psit_26(h_in[1]/monob))))
        qsr = ((dq+dqer*cskin)*(kappa/(np.log(h_in[2]/zoq) -
                                       psit_26(h_in[2]/monob))))
    else:
        usr = (wind*kappa/(np.log(h_in[0]/zo)-psim_calc(h_in[0]/monob, meth)))
        tsr = ct*wind*(dt+dter*cskin)/usr
        qsr = cq*wind*(dq+dqer*cskin)/usr
    return usr, tsr, qsr
sbiri's avatar
sbiri committed
835
# ---------------------------------------------------------------------